Algebra I Reference Sheet

Groups

(Def.) A set G with operation \circ is a **Group** under \circ if

- 1. G is closed under \circ (Binary Operation)
- 2. G has an identity.
- 3. G has inverses.
- 4. G is associative.

Terminology

- 1. Dihedral Group, $D_n, n \geq 3$ (Order 2n)
- 2. Abelian (Commutative)
- 3. Cayley Table
- 4. $GL(n,F), SL(n,F), \mathbb{Z}_n, U(n), n \in \mathbb{N}$
- 5. Shoe-Socks Property, $(ab)^{-1} = b^{-1}a^{-1}$

Subgroups

(Def.) A subset of a Group is a **Subgroup** if it is itself, a group under the same operation.

3-Step Subgroup Test

 $S \leq G$ (Subgroup notation) iff

- 1. $S \neq \emptyset$
- 2. S is closed under \circ
- 3. S has inverses. $(a \in S \Rightarrow a^{-1} \in S)$

Terminology

- 1. Proper Subgroup
- 2. Order of a Group & Order of element
- 3. Center of a Group
- 4. Centralizer of an element

Cyclic Groups

A group, G, is **Cyclic** if $\exists g \in G$ such that $G = \{g^n : n \in \mathbb{Z}\} = \langle g \rangle$. We say g a generator of G.

Properties

- 1. For a in a group of order n, $a^i = a^j$ iff n|i-j|
 - (a) If the group is infinite, $a^i = a^j$ iff i = j and $a \neq e$
- 2. For a in a group of order n, $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $|a^k| = n/gcd(n,k)$ for $k \in \mathbb{Z}^+$
- 3. Every subgroup of a cyclic group is cyclic.
- 4. Say $G = \langle a \rangle$, $a \in G$, |a| = n. Then $\langle a \rangle = \langle a^k \rangle$ iff gcd(n,k) = 1.

Terminology

1. Subgroup Lattice

Permutations

(Def.) A **Permutation** of a set A is a bijection from $A \to A$. A **Permutation Group** is a set of permutations that form a group under function composition.

Properties

- 1. Every permutation of a finite set can be written as the product of disjoint cycles.
- 2. Disjoint cycles are commutative.
- 3. The order of a permutation is the LCM of the lengths of its disjoint cycles.
- 4. Every permutation in S_n , n > 1, is a product of 2-cycles.

Terminology

- 1. Cycle Notation
- 2. Symmetric Group of degree n, S_n is the group of all permutations on $\{1, 2, ..., n\}$
- 3. Even/Odd Permutations (# of 2-cycles)
- 4. Alternating Group of degree n, A_n , is the set of even permutations in S_n .

Isomorphisms

(Def.) An **Isomorphism**, ϕ from a group G to a group \overline{G} is a bijection that preserves operations, that is

$$\phi(ab) = \phi(a)\phi(b) \ \ \forall \ a,b \in G$$

If an isomorphism exists from $G \to \overline{G}$ then we say that G and \overline{G} are **Isomorphic** and write $G \approx \overline{G}$.

Cayley's Theorem

Every group is isomorphic to a group of permutations, T with

$$T = \{T_g : g \in G\}$$
 where $T_g(x) = gx \ \forall x \in G$

Properties

Let $\phi: G \to \overline{G}$ be an isomorphism.

- 1. $\phi(e) = \overline{e}, e \in G, \overline{e} \in \overline{G}$.
- 2. For $a \in G$, $\phi(a^n) = [\phi(a)]^n$
- 3. For $a, b \in G$, ab = ba iff $\phi(a)\phi(b) = \phi(b)\phi(a)$.
- 4. G is Abelian iff \overline{G} is Abelian.
- 5. $G = \langle a \rangle$ iff $\overline{G} = \langle \phi(a) \rangle$.
- 6. $|a| = |\phi(a)|$ (Isomorphisms preserve order)
- 7. G is cyclic iff \overline{G} is cyclic.
- 8. ϕ^{-1} is an isomorphism.
- 9. If $H \leq G$, then $\phi(H) = {\phi(h) : h \in H} \leq \overline{G}$.
- 10. $Aut(\mathbb{Z}_n) \approx U(n)$

Terminology

- 1. Automorphism (Isomorphism from $G \to G$)
- 2. Inner Automorphism (induced by a), ϕ_a , $a \in G$ such that $\phi_a(x) = axa^{-1}, \forall x \in G$.
- 3. Aut(G), Inn(G) the group of automorphisms and inner automorphisms on G.

Cosets

(Def.) Let G be a group and $H \leq G$. Then the **Left Coset** of H in G containing a is $aH = \{ah : h \in H\}$. **Right Cosets** are similar.

Properties

Let (G, \circ) be a group, $H \leq G, a \in G$. All properties apply to right cosets similarly.

- 1. $a \in aH$ (since $ae \in aH$)
- 2. aH = H iff $a \in H$.
- 3. Distinct left cosets are disjoint.
- 4. aH = bH iff $a^{-1}b \in H$
- 5. $|aH| = |bH| = |H| \ \forall a, b \in G$
- 6. $aH = Ha \text{ iff } a^{-1}Ha = H.$
- 7. $aH \leq G \text{ iff } a \in H \text{ (so } aH = H)$
- 8. $G = \bigcup_{a \in G} aH$

Lagrange's Theorem

If G is a finite group and $H \leq G$. Then |H| divides |G|. Moreover the number of distinct left cosets is |G|/|H|.

External Direct Products

(Def.) Let G_1, G_2, \ldots, G_n be groups. Then the **external direct product** of G_1, G_2, \ldots, G_n is

$$G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, \dots, g_n) : g_i \in G_i\}$$

Note: The product of elements is done componentwise, so we use the operation of each G_i for its components.

Properties

- 1. $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is a group.
- 2. $|G_1 \oplus G_2 \oplus \cdots \oplus G_n| = |G_1||G_2|\cdots |G_n|$
- 3. $|(g_1, g_2, \dots, g_n)| = lcm(|g_1|, |g_2|, \dots, |g_n|)$
- 4. Let G, H be finite groups. $G \oplus H$ is cyclic iff |G|, |H| are coprime.
- 5. If G is finite Abelian, then

$$G pprox \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_n^{k_n}}$$

for primes p_i , and $k_i \in \mathbb{N}$.

Normal Subgroups

(Def.) A subgroup H of a group G is called a **normal subgroup** of G if $aH = Ha \ \forall a \in G$, denoted $H \triangleleft G$.

Normal Subgroup Test

 $H \triangleleft G \text{ iff } xHx^{-1} \subseteq H \ \forall x \in G.$

Factor Groups

(Def.) Let G be a group and $H \triangleleft G$. The set

$$G/H = \{aH : a \in G\}$$

is a group under the operation (aH)(bH) = (ab)H.

Terminology

1. Internal Direct Product. $G = H \times K$ iff H, K are normal subgroups of G and

$$G = HK = \{hk : h \in H, k \in K\}$$
 and $H \cap K = \{e\}$

Group Homomorphisms

(Def.) Given groups G, \overline{G} and function $\phi: G \to \overline{G}$, then ϕ is a **group homomorphism** if ϕ preserves operations.

Kernel of ϕ

(Def.)
$$Ker(\phi) = \{ q \in G : \phi(q) = \overline{e} \}$$

Properties

Given group homomorphism $\phi:G\to \overline{G},\ g\in G,$ $H\leq G,\overline{K}\leq \overline{G}.$

- 1. $\phi(e) = \overline{e}$
- 2. $n \in \mathbb{Z}, \phi(g^n) = [\phi(g)]^n$
- 3. If |g| is finite, then $|\phi(g)|$ divides |g|
- 4. $Ker(\phi) \leq G$
- 5. $\phi(G) \leq \overline{G}$
- 6. The inverse image of \overline{K} ,

$$\phi^{-1}(\overline{K}) = \{k \in G : \phi(k) \in \overline{K}\}\$$

is a subgroup of G.

- 7. If H is cyclic, then $\phi(H)$ is cyclic.
- 8. If H is Abelian, then $\phi(H)$ is Abelian.
- 9. If $H \triangleleft G$, then $\phi(H) \triangleleft \phi(G)$.
- 10. If $\overline{K} \triangleleft \overline{G}$, then $\phi^{-1}(\overline{K}) \triangleleft G$.
- 11. If ϕ is a bijection, then ϕ is an isomorphism, then $G \approx \overline{G}$.

First Isomorphism Theorem

Given $\phi: G \to \overline{G}$ is a group homomorphism. Then

$$G/Ker(\phi) \approx \phi(G)$$