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Abstract

Although a favorite of fractal geometers, the Hausdorff measure of many classical
fractals is often difficult to calculate or even bound. In this work we review some
important definitions and results from fractal geometry and define the fractal known
as the level-N Sierpinski gasket. By generalizing a previous technique used for the
classical Sierpinski gasket, the main result of this work obtains an upper bounds for
the Hausdorff measure of the level-N Sierpinski gasket.

1 Introduction

Fractal sets often show the same pattern at multiple scales. Many prototypical examples
of fractal sets can be generated by what are known as iterated function systems—a finite
collection of contraction maps on the same space. The classical Cantor set and Sierpinski
gasket are examples of fractals that arise from iterated function systems.

Fractals have many fascinating properties; among them are their dimension and measure.
While fractal dimensions have been carefully explored, much is not known about the measure
of fractal sets; see [Fal14], [Hut81]. A common approach to measuring the size of a fractal set
is the use of Hausdorff measure, a generalization of the Lebesgue measure. The Hausdorff
measure approximates the size of a set with sets of sufficiently small diameters. It also
includes a parameter s ≥ 0 which grants flexibility in how a set grows as it is scaled. For sets
like lines, planes, or cubes the parameter s is an integer and reflects the topological dimension
of the set being measured. For the fractal sets we consider in this work the parameter s will
give a non-integer dimension.

We now state some preliminary definitions before formally defining the Hausdorff measure
and Hausdorff dimension of a set in Rn.
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Definition 1.1. Let F ⊆ Rn. A collection {Ui}i∈I of subsets of Rn is a cover of F if

F ⊆
⋃
i∈I

Ui.

The diameter of a set F is defined by

diam(F ) = sup{|x− y| : x, y ∈ F}.

Definition 1.2. Let F ⊆ Rn, s ≥ 0, and δ > 0. Define

Hs
δ(F ) = inf

{
∞∑
i=1

diam(Ui)
s : F ⊆

∞⋃
i=1

Ui and diam(Ui) < δ

}
. (1)

As δ decreases, the infimum is taken over a reduced class of permissible covers of F so Hs
δ(F )

increases. The limit
Hs(F ) = lim

δ→0
Hs
δ(F )

is called the s-dimensional Hausdorff measure of F . The Hausdorff dimension of F
is defined to be

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞}.

We will expand upon the definition of Hausdorff dimension. If r > s we have for a δ
cover {Uj}j∈J of F that∑

j∈J

diam(Uj)
r =

∑
j∈J

diam(Uj)
r−s diam(Uj)

s ≤ δr−s
∑
j∈J

diam(Uj)
s

and hence Hr
δ(F ) ≤ δr−sHs

δ(F ).

Letting δ → 0 we see that if for some s, Hs(F ) <∞ then for all r > s, Hr(F ) = 0. This
means that for most values of s the Hausdorff measure of a fixed set F ⊆ Rn is either 0 or
infinity. The value of s at which the Hausdorff measure of a set switches from being infinite
to being 0, gives us a notion of dimension that is better suited for studying fractal sets than
the typical topological dimension; see Figure 1.

For even the classical fractal sets, the calculation of Hausdorff measure can be quite
involved. The original intent of this work was to investigate and improve upon the calculation
of the Hausdorff measure of the Sierpinski gasket (Figure 2). In the process, we investigated
a more general class of fractals and we present the results from that work here.

We now briefly summarize the progress on bounding the Hausdorff measure of the Sier-
pinski gasket, S. The reader should note that for S, the Hausdorff dimension is dimH(S) =
log2(3).
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Figure 1: Graph of Hs(F ) against s for a fixed set F ⊆ Rn.

Upper bound on Hs(S):

• (1987) Hs(S) ≤ 0.9508, [Mar87]

• (1997) Hs(S) ≤ 0.9105, [Zho97a]

• (1997) Hs(S) ≤ 0.8900, [Zho97b]

• (1999) Hs(S) ≤ 0.8180, [WW99] (In Chinese)

• (2000) Hs(S) ≤ 0.8308, [ZF00]

Lower bound of Hs(S):

• (2002) Hs(S) ≥ 0.5000, [JZZ02]

• (2004) Hs(S) ≥ 0.5631, [HW04]

• (2006) Hs(S) ≥ 0.6704, [JZZ06]

• (2009) Hs(S) ≥ 0.7700, [Mór09]

Our work is based on the results of Zhou in 1997. We note that these are not the best
known methods for calculating an upper bound for the Hausdorff measure of the Sierpinski
gasket; however, Zhou’s method is readily available for extension to a larger family of level-N
Sierpinski gaskets. The main result of our work is the following theorem found in Section 3.
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Theorem. For the class of level-N Sierpinski gaskets, Zhou’s method may be extended to
show that

Hs(SN) ≤ min
m∈N

1 +
3(

N(1+N)
2

)m
− 5

(1− 1

Nm − 1

)s
.

We now give a brief summary of the sections that follow:

• Section 2 introduces a number of important definitions and helpful results regarding
Hausdorff measure.

• Section 3 introduces a fractal known as the level-N Sierpinski gasket. We then present
the main result of this paper—an extension of the method in [Zho97b] which yields an
upper bound on the Hausdorff measure of the level-N Sierpinski gasket for any N ≥ 2.

• Section 4 summarises our results and makes some closing remarks.

Figure 2: Sierpinski gasket

2 Key Definitions

One property shared by many fractals is that of self-similarity. One may observe that fractals
such as the Sierpinski gasket are made up of pieces that are geometrically similar to the entire

4



set; see Figure 2. Iterated function systems can be used to construct many interesting fractal
sets with rich structure and a simple method of calculating the Hausdorff dimension. We
now state a number of definitions which will be essential to the remaining sections.

Definition 2.1. A contraction is a mapping S : Rn → Rn such that

|S(x)− S(y)| ≤ r|x− y|

with 0 < r < 1 for all x, y ∈ Rn. The number r is the ratio of the contraction S. If equality
holds above, then we say S is a similarity which transforms subsets of Rn into geometrically
similar sets. A finite family of contractions {S1, S2, . . . , Sm}, where Si : Rn → Rn, is called
an iterated function system or IFS.

The following theorem tells us how to associate a set to an IFS. The proof of the theorem
is an application of the Banach fixed point theorem; a complete proof can be found in [Fal14,
pp. 135–136].

Theorem 2.1. Let {Si}mi=1 be a collection of contractions on D ⊂ Rn. Then there exists a
unique non-empty compact set F ⊂ Rn such that

F =
m⋃
i=1

Si(F ).

This set F is called the attractor or invariant set of the IFS {Si}mi=1.

The attractor of an IFS made up of a collection of similarities is called a self-similar set.
With the addition of a separation property, we may calculate the Hausdorff dimension of a
self-similar set using a theorem found in [Fal14, p. 140]. This separation condition is known
as the open set condition and requires the existence of a non-empty bounded open set V
such that

m⋃
i=1

Si(V ) ⊂ V

where this union is disjoint.

Theorem 2.2. Let Si be similarities on Rn with ratios ri (1 ≤ i ≤ m) and which satisfy the
open set condition. If F is the set satisfying

F =
m⋃
i=1

Si(F )

then dimH(F ) = s where s is the real number satisfying

m∑
i=1

rsi = 1.

5



The Cantor set for example may be defined as the attractor of the following IFS,{
S1(x) = 1

3
x

S2(x) = 1
3
x+ 2

3
.

Thus, it is easy to calculate that the Hausdorff dimension of the Cantor set is log3(2). As
another example, the Sierpinski gasket is the attractor for the IFS

Fi(x) =
1

2
(x− pi) + pi

where p1 = (0, 0), p2 = (1, 0) and p3 =
(

1
2
,
√
3
2

)
. Since each of these 3 similarities has ratio

1
2
, we see that the Hausdorff dimension of the Sierpinski gasket is dimH(S) = log2(3).

3 The Level-N Sierpinski Gasket

3.1 Definition of SN

We next introduce a class of fractals which generalizes the construction of the Sierpinski
gasket. For an integer N ≥ 2, we informally define the level-N Sierpinski Gasket, SN , by
the following process; see Figure 3 and Figure 4 for example.

1. Begin with a unit triangle with vertices (0,0),(1,0),
(

1
2
,
√
3
2

)
and denote it SN0

2. In the next iteration, SN1 is formed by dividing SN0 into N2 equal triangles that are
each a scaled copy of SN0 by a factor of 1

N
.

3. To reach SNk+1, repeat the division described in step 2 on each upright triangle of SNk

4. SN is obtained by taking k →∞ above.

Formally, the level-N Sierpinski gasket is defined as the attractor of the IFS given by the
similarities produced by the following algorithm:

for i from 0 to N − 1
for j from 0 to N − i

fi,j(x) = 1
N

[x+ i(1/2,
√

3/2) + j(1, 0)]
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(a) S3
0 (b) S3

1 (c) S3
2

Figure 3: Construction of S3

(a) S4
0 (b) S4

1 (c) S4
2

Figure 4: Construction of S4

For example, when N = 3 we have the following IFS:



f0,0(x) =
1

3
x

f0,1(x) =
1

3

(
x+

[
1

0

])

f0,2(x) =
1

3

(
x+

[
2

0

])



f1,0(x) =
1

3

(
x+

[
1/2√
3/2

])

f1,1(x) =
1

3

(
x+

[
3/2√
3/2

])

f2,0(x) =
1

3

(
x+

[
1√
3

])

which yields the level-3 Sierpinski gasket. Note that the classic Sierpinski gasket, S, is given
by the case N = 2. Also, it is easy to see that there are 1

2
N(N+1) similarities for the N case.

By Theorem 2.2, a calculation will yield that the level-N Sierpinski gasket has Hausdorff
dimension

dimH(SN) =
log
(
N(N+1)

2

)
log(N)

. (2)
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3.2 Extension of Zhou’s Method

Here we present the main results of this paper. In [Zho97b], Zhou introduces a method
which establishes upper bounds for the Hausdorff measure of the classical Sierpinski gasket.
We take Zhou’s construction and extend it to sets SN .

Let fα : R2 → R2 be a similarity transformation of ratio α > 0. If F ⊂ R2, then by
[Fal14, p. 46], we have the scaling property

Hs(fα(F )) = αsHs(F ). (3)

For convenience, we’ll define fnα = fα ◦ fn−1α for n = 2, 3, 4, . . . , with f 1
α = fα.

For the remainder of this work we will set s = logN

(
N(N+1)

2

)
. Let β = {Ui : i ∈ N} be a

δ-cover of SN and let εβ ∈ R be the error in using β to estimate Hs(SN), then

Hs(SN) =
∞∑
i=0

diam(Ui)
s + εβ.

Let k ∈ N. Compressing β via fk1/N results in a δ/Nk-cover of fk1/N(SN). Taking
(
N(N+1)

2

)k
duplicates of fk1/N(β) reconciles a δ/Nk-cover of SN by exploiting the set’s symmetry. The
reader should note that (

N(N + 1)

2

)k
= N sk

where s = logN

(
N(N+1)

2

)
. With this in mind, we consider the following proposition.

Proposition 3.1. We have

Hs(SN) =

(
N(N + 1)

2

)k ∞∑
i=1

(
1

Nk
diam(Ui)

)s
+ εβ =

∞∑
i=1

diam(Ui)
s + εβ (4)

and

Hs
(
fk1/N(SN)

)
=

(
N(N + 1)

2

)−k
Hs(SN) =

∞∑
i=1

(
diam(Ui)

Nk

)s
+

(
N(N + 1)

2

)−k
εβ. (5)

Proof. Equation (4) is clear. Equation (5) follows from (3) and (4). �

Proposition 3.2. Let δ > 0. Then

Hs(SN) = Hs
δ(SN). (6)
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Proof. We first note that Hs(SN) ≥ Hs
δ(SN) is clear by definition. Let ε > 0. Since

Hs
δ(SN) = inf

{
∞∑
i=1

diam(Ai)
s : {Ai} is a δ-cover of SN

}
,

there exists a δ-cover, Γ = {Vi : i ∈ N}, such that

∞∑
i=1

diam(Vi) ≤ Hs
δ(SN) + ε.

Letting k ≥ 0 and using N sk duplicates of fk1/N(Γ) as a δ
Nk -cover of SN , we have

Hs
δ/Nk(SN) ≤ N sk

∞∑
i=1

(
1

Nk
diam(Vi)

)s
=
∞∑
i=1

diam(Vi)
s ≤ Hs

δ(SN) + ε.

Taking k →∞ and noting that ε is free gives us that

Hs(SN) ≤ Hs
δ(SN).

�

Our focus is on the level-N Sierpinski gaskets, but one should note that these propositions
may be extended to the class of all self-similar fractal sets. Now we move to the main result
of the paper.

Theorem 3.3. For the class of level-N Sierpinski gaskets Zhou’s method [Zho97b] may be
extended to show that

Hs(SN) ≤ min
m∈N

1 +
3(

N(1+N)
2

)m
− 5

(1− 1

Nm − 1

)s
. (7)

Proof. Our goal is to build a sequence of covers of SN whose diameters are decreasing. In
what follows we will denote by SNi , the i-th step in the construction of the level-N Sierpinski

gasket. Beginning from SN0 , we label the 3 vertices A = (0, 0), B =
(

1
2
,
√
3
2

)
, and C = (1, 0).

We iterate m ∈ N times to SNm and label 6 points,

am1 :
(

1
2Nm ,

√
3

2Nm

)
am2 :

(
1
Nm , 0

)
bm1 :

(
Nm−1
2Nm ,

√
3(Nm−1)
2Nm

)
bm2 :

(
Nm+1
2Nm ,

√
3(Nm−1)
2Nm

)
cm1 :

(
Nm−1
Nm , 0

)
cm2 :

(
2Nm−1
2Nm ,

√
3

2Nm

)
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which are the pairs of vertices from stage m which are nearest to the vertices A, B, and C;
see Figure 5a. We form three triangles using A,B,C and their corresponding pairs:

4Aam1 am2 , 4Bbm1 bm2 , 4Ccm1 cm2 .

For convenience, we denote the set of points contained in a single one of these triangles by
TmN . Thus, by taking three copies of TmN , denoted 3-TmN , and positioning them correctly, we
recover 4Aam1 am2 ,4Bbm1 bm2 and 4Ccm1 cm2 .

Next, we use these 6 neighbors again to form a hexagon and label the set of points
contained in it Hm

N ; see Figure 6a.

Note that diam(Hm
N ) = 1− 1

Nm . The union of Hm
N with 3(20) copies of TmN forms a cover

of SN , which we label σ1; see Figure 6a,

σ1 = {Hm
N , 3(20)-TmN }.

To reach σ2, we iterate m times again to reach SN2m. From each of am1 , am2 , bm1 , bm2 , cm1 ,
and cm2 , we mark the pair of nearest neighbors closest to the center of SN2m; see Figure 5b.
Label the triangles formed as T 2m

N , of which there are 3(21), and we shrink our hexagon Hm
N

slightly such that these new neighbors lie on its boundary; see Figure 6b.

We label this hexagon H2m
N and note that diam(H2m

N ) = 1−
(

1
Nm + 1

N2m

)
. Now we define

σ2 = {H2m
N , 3(20)-TmN , 3(21)-T 2m

N }.

Continuing in this process, we have, at the nth-step,

σn = {Hnm
N , 3(20)-TmN , 3(21)-T 2m

N , . . . , 3(2n−1)-T nmN }

where

diam(Hnm
N ) = 1−

n∑
i=1

1

Nmi
.

Thus, we have a sequence of coverings of SN , {σn}∞n=1. We will further modify this cover to
obtain the result we want.
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A C

B

a3
1

a3
2

b3
1 b3

2

c3
1

c3
2

(a) Points forming σ1.

A

a3
1

a3
2

a6
1

a6
2

a6
3

a6
4

(b) Points used in the left corner for-
mation of σ2

Figure 5: Zhou’s Method on S with m = 3 (Points).

T3
2 T3

2

T3
2

H3
2

(a) Visualization of σ1.

T3
2

T6
2

T6
2

H6
2

(b) Visualization of the left corner of
σ2.

Figure 6: Zhou’s Method on S with m = 3 (Sets).

Let n ≥ 0 and let β = {Vi : i ∈ N} be a cover of SN . For convenience, let us use fnm1/N(β)

to denote the collection of sets fnm1/N(Vi) where i ∈ N. In other words,

fnm1/N(β) = {fnm1/N(Vi) : i ∈ N}

By definition, fnm1/N(β) covers fnm1/N(SN); after perhaps a translation of the sets, we may

assume that fnm1/N(β) covers fnm1/N(SN) ∩ T nmN . Thus, we may replace T nmN with fnm1/N(β) in σn
for n = 1, 2, 3, . . . , and obtain a new sequence of covers, {vn}∞n=1, where

vn = {Hnm
N , 3(20)-fm1/N(β), 3(21)-f 2m

1/N(β), . . . , 3(2n−1)-fnm1/N(β)}.
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By Propositions 3.1-3.2 we have

Hs(SN) = Hs
1(SN) (8)

≤

(
1−

n∑
k=1

1

Nmk

)s

+ 3

 n∑
j=1

2j−1(
N(N+1)

2

)mj
 ∞∑

i=1

diam(Vi)
s (9)

where in particular we have used the fact that

diam(fnm1/N(Vi))
s = N−nms diam(Vi)

s =

(
N(N + 1)

2

)−nm
diam(Vi)

s.

Using the error εβ and Proposition 3.1,

Hs(SN) ≤

(
1−

n∑
k=1

1

Nmk

)s

+ 3

 n∑
j=1

2j−1(
N(N+1)

2

)mj
(Hs(SN)− εβ

)
. (10)

Noting that we may choose β so that |εβ| is sufficiently small, we have that

Hs(SN) ≤

(
1−

n∑
k=1

1

Nmk

)s

+ 3

 n∑
j=1

2j−1(
N(N+1)

2

)mj
Hs(SN). (11)

Evaluating terms, we have

Hs(SN) ≤
(
Nm − 2 +N−nm

Nm − 1

)s
+

3(
N(N+1)

2

)m
− 2

[
1−

(
2m+1

Nm(N + 1)m

)n]
Hs(SN).

Thus,

Hs(SN) ≤

(
Nm−2
Nm−1 + N−nm

Nm−1

)s
1− 3

(N(N+1)
2 )

m
−2

[
1−

(
2m+1

Nm(N+1)m

)n] (12)

The term on the right of (12) is decreasing as n→∞. One can justify this by noting that the

numerator will decrease as n gets larger while the denominator tends to 1−3

(
1

(N(N+1)
2 )

m
−2

)
as n gets larger. We take the limit n→∞ and obtain

Hs(SN) ≤
(
Nm−2
Nm−1

)s
1− 3

(
1

(N(1+N)
2 )

m
−2

)

=

1 +
3(

N(1+N)
2

)m
− 5

(1− 1

Nm − 1

)s
.

Finally, we simply need to minimize over m ∈ N, which gives us the desired result in (7). �
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
N

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94
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Figure 7: Upper bounds of Hs(SN) vs. N

4 Closing Remark

Below we show a summarizing table of the correspondence betweenN andm forN = 1, . . . , 6.
See also Figure 7 for a graph which plots the upper bound for Hs(SN) for levels 2 through
20.

N 2 3 4 5 6

mmin 3 2 1 1 1

Hs(SN) ≤ 0.890039 0.882138 0.815903 0.801163 0.812767

In [ZF00], Zhou and Feng extend the method of approximating the Hausdorff measure
of S by using hexagons to a method which instead uses dodecagons. In the future, we
would like to investigate how these improved methods can yield better approximations for
the Hausdorff measure of the level-N Sierpinski gaskets as well as other fractal sets.
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