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1 Important Theory:

Gronwall Inequality (Brauer Thm. 1.4)

e Theorem: Let K be a nonnegative constant and let f,g : [o, 8] — R be
continuous nonnegative functions satisfying

fH) <K+ / F(s)g(s)ds

i< wen{ [ tg<s>ds}

for « <t < . Then

for all t € [a, B].

Proof Outline.

Set u(t) == K + f; f(s)g(s)ds

Take u/(t) and use the fact that f(¢) < u(t)

Force the product rule by multiplying an integrating factor.
Integrate from « to t.

Move things around and note that f(¢) < u(t).

SANEE R

First Existence and Uniqueness (Brauer Thm. 1.1)

e Theorem: Let F be a vector function (with n components) defined in a region
D of R™"!. Let the vectors F' and F/dy; be continuous in D forallk =1,...,n.
Then given a point (to,7) € D, there exists a unique continuous solution ¢ of
the system

Y =f(t,y)  ylto) =n

The solution ¢ exists on an interval I containing tq for which the points (¢, ¢(t)) €
D when t € I.

Linear System Existence and Uniqueness (Brauer Thm. 2.1)

e Theorem: If A(t),g(t) are continuous on some interval a <t < b, if a <ty < b,
and if |n| < oo, then the system y' = A(t)y + g(¢) has a unique solution ¢(¢)
satisfying ¢(tp) = n and ¢ exists on a <t < b.

e Note that the interval for which the solution ultimately exists on depends on




domain in which F(t,y) = A(t)y + g(t) is continuous. If D = dom(F’) is given
by

D = [a,b] x (—o0,00)
then the existence interval, which proliferates from ¢, continues so long as |¢(t)| <
00, i.e. for t € [a,b], the point (¢, ¢(t)) remains in D.

Abel’s Formula (Brauer Thm. 2.3)

o Theorem: If ® is a solution matrix of

on I and if ty € I, then

det ®(t) = det D(to) exp{ Zaﬁ } tel

to]l

Fundamental Matrix Criteria (Brauer Thm. 2.4)

e Definition: A solution matrix on [ for y’ = A(t)y whose columns are linearly
independent on [ is called a fundamental matriz.

e Theorem: A solution matrix ® of y’ = A(¢)y on an interval [ is a fundamental
matrix on [ iff det ®(¢) # 0 for all t € I.

Variation of Constants Formula (Brauer Thm. 2.6)

e Theorem: If ¢ is a fundamental matrix of y’ = A(¢)y on an interval I, then

is the unique solution of
y' =A(t)y +g(t)
satisfying ®(t9) = .

e Using this, we have that any solution to y’ = A(t)y + g(¢) can be written as
y(t) = @p(t) + W(1)

where ® is as stated above and ®;, is the solution to the homogeneous equation
such that the initial conditions agree.




Fundamental Matrix for Constant Coefficient Linear System (Brauer Thm. 2.7)

e Theorem: The matrix
O(t) = et

is the fundamental matrix of y' = Ay with ®(0) = I,, on —oo < t < 0.

e If A is a constant coefficient matrix, then the solution to the system

y' = Ay +g(t)
y(0) =7
is given by

t
y(t) = Aty + / ATy (s)ds
0

Eigenvalue bound on Fundamental Matrix (Brauer Thm. 2.10)

e Theorem: If A\, )y, ..., Ay are the distinct eigenvalues of A, where A; has
multiplicty n; and ny +--- +n, = n and if p is any number larger than the real

part of Aq,..., A\, ie.

p> max R(\))
j=l,ik

then there exists a constant X > 0 such that

|exp{tA}| < Kexp{pt} t€0,00)

Existence Theorem (Brauer Thm. 3.1)

e The system we will situate ourselves in is

y = fty)  yto) =0

with f,df /0y continuous on the rectangle R given by

R={(t,y): |t —to| <a,|y—yo| <b}

e Lemma: Define a to be the smaller of the positive numbers a,b/|| f||s- Then

the successive approximations ¢, given by

Po(t) = yo
¢n+1(t> = Yo + Lz f(87 ¢n(s))ds n=12...

is well defined on the interval I = {t : |t — ty| < a} and on this interval

|6n(t) = ol < [[flloclt =to] <0 n=1,2,...




e Theorem: Suppose f,0f/0y are continuous on the closed rectangle R. Then
the successive approximations ¢,, converge uniformly on the interval I to a
solution ¢ of the above system.

Poincare Diagram: Phase Portrait Classification

Poincaré Diagram: Classification of Phase Portaits

A=0:
A—0 det A det A:%(Tr A)?
: spiral sink spiral source :
degenerate sink degenerate source
uniform “I' center

motion

sink source Tr A
2 2
line of stable fixed points saddle line of unstable fixed points

Bifurcation Normal Forms (Strogatz Ch. 3)

Each type of bifurcation has a prototypical normal form.

1. (Saddle-node)
¥ =r+a?

2. (Transcritical)

I/:TI—.I‘2

3. (Supercritical pitchfork)

e

4. (Subcritical pitchfork)
' =rz+2°




Fundamental Solution of Laplace’s Equation (Evans Sec. 2.2.1)

e Definition: The function

defined for z € R, x # 0, is the fundamental solution of Laplace’s equation,
Au = 0.

e We also have the following estimates on the gradient and Hessian of ®,

C

]

|D®(z)] < [A%®(z)| < (x #0)

for some C > 0.

e Theorem: If u € C?(f2) is harmonic, then

ulz) = ]ém u(y)dS(y) = ][ s

for each ball B,(x) C Q.

Proof Outline.
1. Define a function ¢(r) = faBr(w) u(y)dS(y).

2. Use a change of coordinates so that we’re integrating over 9€). This is
y+— x+7rz (dS(z)) and a factor of r"~! appears as well so that we preserve
the average.

3. Take ¢/(r) so that a z pops out and convert back to y so that the z becomes
Y=% which is exactly the unit normal vector.

4. Use Green’s theorem so convert the integral to a useful formula, ¢'(r) =
. JCBT(:{:) Au(y)dy and use harmonicity.

5. Thus, ¢ is constant so we can take r — 0 to get u(x).

6. For f, (z) use polar coordinates to pull out fon. () @nd use the mean value
formula over the surface.

e Theorem: If u € C%(Q) satisfies

u(z) = ]iBT(x) u(y)dS(y)

for each ball B,.(z) C €2, then u is harmonic.

10




Proof Outline.

1. Suppose Au(zg) > 0.

2. Define ¢(r) = f,p ) w(y)dS(y), then we still get &' (r) = & f, . Au(y)dy.

3. The hypothesis gives us that ¢(r) = u(xy) for every r, so ¢ is constant
which leads to the contradiction.

Strong Maximum Principle for Laplace’s Equation (Evans Thm. 2.2.4)

e Theorem: Suppose u € C*(Q) N C(Q) is harmonic within . Then,

1. maxu = maxu.
Q o0

2. If Q is connected and there exists a point zy € ) such that

u(zp) = maxu,
Q
then w is constant in ).

Proof Outline.
1. Proving (2) first, if zy € Q is maximal, then draw the ball Bigt(zo,00)(%0)
and use the mean value formula.

2. Thus, Buaist(zo09)(20) C  uw '({u(x)}) which shows openness of
u™ ' ({u(zy)}). Closedness of u™'({u(xg)}) follows from {u(zg)} being a
singleton, hence closed (preimage of closed is closed). Thus, it must be the
entire set €).

3. Then use connectedness and that w is continuous to 9.

4. To show (1), just use the same assumption and we’ll get u constant on an
open component of 2. Then take u continuous to 0f2 for the contradiction.

¢

Uniqueness of Solution to Poisson’s Equation (Evans Thm. 2

o Theorem: Let g € C(99), f € C(£2). Then there exists at most one solution
u € C%*Q) N C(Q) of Poisson’s equation

—Au=f in )
u=gq on 02

11




Smoothness of Harmonic Functions (Evans Thm. 2.2.6)

1.

e Theorem: If u € C(Q) satisfies the mean value property for each ball B,.(z) C
Q, then

ue C®(Q)

Proof Outline.

Let 1 be the standard mollifier which we note is radial and define n.(z) =
1 (%) which has supp(n.) C B(0).

Set u¢ = nexu in Q. = {x € Q : dist(z, 0Q) > €} and we know ¢ is smooth.

Calculate using the definition of 7., polar coordinates, and the mean value
property to get that u®(x) = u(x) in €2, for all e.

Conclude that u € C*(2).

1.
2.

Harnack’s Inequality for Harmonic Functions (Evans Thm. 2.2.11)

e Theorem: For each connected open set V with V' CC €2, there exists a positive
constant C', depending only on V', such that

supu < C'inf u
Vv 14

for all nonnegative harmonic functions u in €2.

Proof Outline.

Let r := 1 dist(V, 0Q) and choose z,y € V with |z —y| <r

Use mean value formula over By, (), u nonnegative, and B,.(y) C Ba.(z) to

calculate u(z) > s-u(y).

. Use V connected, V compact to cover V be a finite chain of overlapping

balls of radius r/2.

Induct over the number of balls and repeat (2) to get u(x) >
any z,y € V.

1

ST [OF

12




Poisson’s Formula for the Ball (Evans Thm. 2.2.15)

e Theorem: If u € C?(Q) solves Poisson’s equation,

—Au=f in(
u=g on 02

for f € C(Q), g € C(09), then
oG
ua) == [ oG nasw+ [ ruGl @en)

e Definition: Green’s function for the unit ball is

G(r,y) =@y —z) —(lz|(y — 7))  (z,y € B1(0),7 # y)

where 7 = e

e Theorem: Assume g € C(9B,(0)) and define u by

R il i 9(y) )
i s+ [ G

J/

-
Inhomogeneous term

then
— u € C™(B,.(0)).
— Au=0in B,(0)
— lim wu(z) = g(xo) for each point zo € 9B,(0).

Tr—TQ
x€B;-(0)

Energy Method for Uniqueness of Poisson’s (Evans Thm. 2.2.16)

e Theorem: There exists at most one solution u € C?(Q) of

—Au=f in
u=gq on 0f2

Proof Outline.

1. Consider two solutions uj, uy satisfying the above equation and take their
difference w = uy — uo.

2. We then see Aw = 0 and w = 0 on 0, so integrate wAw by parts to find
|Dw| =0

13



3. Hence w =0 in .

Dirichlet’s Principle (Evans Thm. 2.2.17)

e Theorem: Assume u € C?(Q) solves

—Au=f in{
u=gq on 0f2

Then,

Iw] == [, 3|Dw|* —wfdy

Iu] = min [w] where {A = {we Q) :w= o0
=qw w=gon }

weA

Conversely, if u € A, satisfies the above minimization problem, then u solves the
Poisson equation above.

Proof Outline.
1. (Forward direction) First notice that 0 = [,(—Au — f)(u — w)dy since
—Au— f=0.

2. Distribute and integrate —Au(u—w) by parts. Moving things around gives
Jo |Du? = fudy = [, Du- Dw — fw.

3. Using the Cauchy Schwarz and Cauchy’s inequality, we know |Du - Dw| <
|Du||Dw| < §|Du|? + 1| Dw|?

4. Use (2) on [, Du- Dw — fw to find I[w] and move things around to get
1] < Ifw]

5. (Backward direction) Consider a small perturbation i(€) := I[u + ev] where
ecRand v e CX(Q).

Note that ¢/(0) = 0 since € = 0 is minimal

Expand and distribute i(e), take < of i(e) and set € = 0.
Integrate by parts to find 0 = [,(—Au — f)vdy

Since this holds for every v € C°(Q2), then —A — f = 0.

© 0 N o

14



Fundamental Solution of the Heat Equation (Evans Sec. 2.3.1)

e Definition: The function
_l=i? .
O(xz,t) = (47rt1)“/26 o (reR"t>0)
0 (z € Rt < 0)

is called the fundamental solution of the heat equation, u; — Au = 0.

e Lemma: (Integral of fundamental solution). For each time ¢ > 0,

/n Oz, t)dz = 1.

Note the choice of normalizing constant makes this possible.

Inhomogeneous Initial Value Heat Equation (Evans Thm. 2.3.2)

e Theorem: Let g € C(R™) N L>®(R"), and define u by

u(z,t) = / O(z —y,t)g(y)dy + /O / P(z —y,t —s)f(y,s)dyds
1

lz—y|?

1 lo—y|2 t 2
- o d -_ i(t—s) dud
(47Tt)n/2 /Rne 4 g(y) y+/0 (47T(t— s))"/2 /Rne f(y,s) yds

for x € R™, t > 0, then

1. ue C3R"™ x (0,00)).
2. uy(z,t) — Au(z,t) = f(x,t) for x € R™,t > 0.

3. lim  w(z,t) = g(zg) for each zy € R".
(z,t)—(x0,0)
zeR™,t>0

15



Mean Value Formula for the Heat Equation (Evans Thm. 2.3.3)

e Definition: We define the parabolic cylinder
Qr :=Q x (0,77
and the parabolic boundary of Qr is
Lr:=Qr — Qp

Be careful to note that Q7 contains the interior and the top face while I'y com-
prises the bottom face and the vertical sides.

e Definition: For fixed x € R, t € R and r > 0, we define
n+1 1
E(x,t;r) =4 (y,s) e R"™ s <t, d(z—y,t—s5)>—
/r-n

Note that the ”center” (z,t) is located at the center of the top of the heat ball.

e Theorem: Let u € C?(Qr) solve the heat equation. then

1 [z —yl?
)= —
u<$7 ) 4rn //E(:v,t;r) u(y’ S) (t - 8)2 dyds

for each E(x,t;r) C Q.

Strong Maximum Principle for Heat Equation (Evans Thm. 2.3.4)

e Theorem: Assume U € C?(Qr)NC(Qr) solves the heat equation in Q7. Then

max v = maxu
Qp Tp

Furthermore, if € is connected and there exists a point (xg,t) € Q¢ such that

u(zo,tp) = maxu

then u is constant in €2, .

Uniqueness of Solution to Heat Equation (Evans Thm. 2.3.5)

e Theorem: Let ge C(I'r), f € C(Q2r). Then there exists at most one solution

16



u € C*(Qr) N C(Qr) of the initial /boundary-value problem

u=g on 'y

{ut—Au:f in Qp

Smoothness of Solution to the Heat Equation (Evans Thm. 2.3.8)

e Theorem: Suppose u € CZ(Qr) solves the heat equation in Qp. Then u €
C>(Qr).

Energy Method for Uniqueness of Heat Equation (Evans Thm. 2.3.10)

e Theorem: (Forward uniqueness) There exists only one solution u € C?(Qr) of
the initial /boundary-value problem.

{ut—Au:f in Qp

u=gq on I'r

Proof. Let uy,us be solutions to the heat equation and define w := u; — us so
that w solves

wy —Aw =0 1in Qp
w=20 onI'r
Set

E’(t):/ w(x, t)w(z, t)dx
Qp
:/ w(z, t)Aw(x, t)dx (by the PDE)
Qp
= —/ | Dw|*dx (int. by parts)
Qp
<0

Therefore, E(t) < E(0) = 0 since w = 0 on I'p. Thus, vy —uy = w = 0 in
Qr. O

e Theorem: (Backwards uniqueness) Suppose u;,u; € C?(Qr) solve

u—Au=0 1in Qp
u=yg on 082 x [0, 7]

If wy(z,T) = ug(z, T) for z € Q, then u; = uy in Q.

17



Proof. Let ui,us be solutions to the heat equation and define w := u; — us so

that w solves the homogeneous heat equation with zero boundary condition on
FT- Set

1
E(t) :/ —w?(z,t)dw 0<t<T
Qr 2
and take 0, as well as 9.
E'(t) = —/ | Dw|*dx
Qr

E"(t)=-2 | Dw-(Dw)dz

Qr
= 2/ Awwdx (int. by parts)
Qr
=2 / (Aw)?*dx (By the PDE)
Qr

Now observe that

E'(t) = —/ | Dw|*dx
Qr

= —/ wAwdx (int. by parts)
Qr
< wllzz2@n [ Awl 1207
Thus,
1
[E'(H)? < —2/ dex/ (Aw)*dz = E(t)E"(t)
2 Jar Qr

Now if E = 0 for all t € [0, T}, then we are done, so assume otherwise so that there
exists an interval [t1,ts] C [0,7] where E(t) > 0 for ¢t € [t1,t2) and E(t2) = 0.
Such a t, exists since we can push ¢y to 7" and we know that w(z,T) = 0 by
hypothesis. Now define

f(t) = log(E(t) € [ti,1)

and we see that

7t - ?E((f))
p E(t)E"(t) - [E'(t)]
FO==""T5qp
OO
E(t)  [E®)?
>0 (since [E')> < EE")

18




Thus, f is convex, so for A € (0,1) and t € ({1, t2)
8+ (1=t < Af(t) + (1= A)f(2)
and exponentiating gives
0< B\ + (1= Nt) < EMty)E'(t)
so letting t — t5, we have that
0 < E\t + (1= MNty) < EMt))E" (ty) =0 for all A € (0,1)

Thus, £ = 0 on [t1, ts], a contradiction. Hence E = 0 for ¢t € [0, 7], so w =0 in
Qr. O

d’Alembert’s Formula (Evans Thm. 2.4.1)

e Theorem: (Solution of wave equation, n = 1) Assume g € C%*(R), h € C*(R),
and define u by d’Alembert’s formula,

1 1 T+t
wot) = lol )+ o=+ [ by weRE20
x—t

then

1. ue C*R x [0,00)
2. Uy — Uz = 0 in R X [0, 00).

3. lim  wu(z,t) =g(2°) and  lim  w(z,t) = h(z°) for each point 2° €
(,t)—(2,0) (z,t)—=(2°,0)
£>0 £>0

R.

Uniqueness for Wave Equation (Evans Thm. 2.4.5)

e Theorem: Let €2 C R” be a bounded, open set with a smooth boundary 0f2,
and as usual, set Qr = Q x (O,T],_I‘T = Qp — Qp, where T > 0. Then there
exists at most one solution u € C?(Q7), solving

Ut — Au = f in QT
u=gq on 'y

ug = h on 2 x {t =0}

Proof Outline. 1. Let w = u; — us where uy, us are solutions

2. Define E(t) := 5 [, wi(2,t) + [Dw(z, t)|*dx for 0 < ¢ < T.

3. Take E’(t) and use the PDE to get E'(t) =0 for all 0 <t < T.
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Wave Equation Finite Propagation Speed (Evans Thm. 2.4.6)

e Theorem: Ifu = u, =0 on By (x9) x {t = 0}, then v = 0 within the cone
K(xg,to), where

K(l’o,to) = {([If,t) =0 S t S to, ‘.T—mo‘ S to —t}

Proof. Define the energy function,

1
Bt) = 5/ 2(2,1) + | Dul2(z, t)da
Bty —t(z0)

1
E'(t) = / uguy + Du - Dugdr — —/ u? + |Dul*dS(z)
Biy—t(z0)

0Bty —t(o)
(polar coordinates (derivative))

/ Wty — UrAudx
Bty —t(x0)
1
+/ Du - nudS(z) — —/ u? + |Dul*dS(z)
OBt —t(z0) 2 0Bty —t(70)

1
=0+ / Du - nuydS(z) — —/ u? + | Dul*dS(z)
OBt —t(20) 2 0Bty —t(0)
(by the PDE)

1 1
< -/ Dul® + u2dS(z) -/ 2 + | Dul’dS(z)
2 J 9By, (o) 2 J 9By, (o)

(Young’s ineq.)

=0
Thus, E'(t) < 0. Since u = 0 on By, (z) x {t = 0} then Du = 0 on By, (zo), so
we must have that E(t) < E(0) =0 for 0 <t <ty. Thus, u(x,t) = u(zxg,tg) =0
for all (z,t) € K(xg,to). O

Holder Space (Evans Thm. 5.2.1)

o If u:Q — R. Then we say u is Holder continuous with exponent ~ if
u(z) —u(y)| < Clz —y" (z,y €Q),7€(0,1,C =0
Note if v > 1, then u will be constant.

e Definition: Ifu:Q — R, u € Cy(Q), we write

[ull o) = sup [u(z)]
€
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e Definition: The v*"-Holder seminorm of % : Q — R is

u(z) — u(y)]
Ulpo~ ) = Su
e x,ye% [z =yl
TFy

e Definition: So the y'"-Holder norm of u : Q — R is
[ull con @y = lullo@) + [Wleon @)

e Definition: The Holder space C*7(Q) consists of all functions u € C*(Q) for
which

[ull cro ey = Z 1 Dul| o @) Z [DU] o @) < 00 (o multiindex)

o<k

i.e. the space of functions that are up to k-times continuously differentiable and
whose k' derivatives are bounded and Holder continuous with exponent

e Theorem: Holder space, C*7(Q) is a Banach space.

Weak Derivative (Evans Sec. 5.2.1)

e Definition: Suppose u,v € L .() and « is a multiindex. We say that v is
the a't-weak partial derivative of u, denoted

D =wv

provided

/ uD%¢dy = (—1)l! / vody for all test functions ¢ € C2°(R2)
Q 0

e Lemma: If it exists, then the a-weak derivative of v is uniquely defined up to
a set of measure zero.

Sobolev Space (Evans Sec. 5.2.2)

e Definition: The Sobolev space, denoted W*?(2), consists of all locally L'(£2)
functions u : 2 — R such that for each multiindex o with |a| < k, D%u exists
in the weak sense and belongs to LP(€2).

o If p =2, we usually write

HQ)=W*(Q)  k=0,1,2,...
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and the letter H is used since H*(2) is a Hilbert space. Also, note that H°(Q2) =
L*(9).

e Definition: If u € W*?(Q), we define the Sobolev norm by

1/p
ey = | (S Ja Do) 1< p < o0
Zla\gkz [ D*ul| 2o 0) p =00

e Definition: We denote by W}™*(Q), the closure of C2°(€) in W*?(€). (i.e. the
limit points of C2°(Q2) using the Sobolev metric.)

e Theorem: For each k =€ N and 1 < p < oo, the Sobolev space W*P(Q) is a
Banach space.

Elementary Properties of Weak Derivatives (Evans Thm. 5.2.1)

e Theorem: Assume u,v € W*P(Q), |a| < k. Then,
(1) Du € Whlelr(Q) and DA(D*u) = D*(DPu) = D Py for all a, 8 with
o] + 18] < k.

(i) For each A € R, Mu+v € WFP(Q) and D¥(\u + v) = AD% + D%. i.e.
weak derivatives are linear.

(iii) If V is an open subset of Q, then u € W*P(V).
(iv) If ¢ € C=°(Q), then (u € WkP(Q) and

D*(Cu) = Z (a) DP¢D* Py (Leibniz formula)
B<a B
where (Oﬁ‘) = WL/B), where a! = Hlill ;!

Approximations of Sobolev functions (Evans Sec. 5.3)

e Theorem: (Local Approximation) Assume u € W*P(2) for some 1 < p < o0,
and set
U =me*ku in €,

Then,
— u® € C®(Q,) for each € > 0

— u¢ — u a.e. in Q.

— uf = uin WP(Q) as € — 0.

loc
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e Theorem: (Global Approximation) Assume € is bounded, and suppose that
u € WFP(Q) for some 1 < p < oo. Then there exists functions u,, € C*®(Q)N
WkP(Q) such that

U, —> U in WhP(Q)

If we further have that 92 is C!, then we may take u,, € C=(1).

Extensions (Evans Sec. 5.4)

e Theorem: (Extension theorem) Assume €2 is bounded and 99 is C'. Select
a bounded open set V such that 2 CC V. Then there exists a bounded linear
operator

E WY (Q) - WhP(R™)
such that for each u € W'?(Q).

— Fu=wa.e. in
— Ewu has support (i.e. is nonzero) within V'

— |Eu|lwrr@ry < Cllullwie) where C' depends only on p, 2,V

Traces (Evans Sec. 5.5)

e Theorem: Assume () is bounded and 0f2 is C*. Then there exists a bounded
linear operator

T : WH(Q) — LP(052)
such that
= Tu = ul,, if ue W(Q)NC(Q).
= I Tulle@) < Cllullwire).

e Theorem: Assume  is bounded and 09 is C'. Suppose further that u €
WhP(Q). Then,
weWyP(Q) iff  Tu=0on N

Sobolev Inequalities (Evans Sec. 5.6

e Definition: If 1 <p < n (n is our ambient dimension), the Sobolev conjugate

of pis
¥ np
pr =
n—p
Note that
1 1 1 .
=T p >p
p p n

e Theorem: (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 < p < n.
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There exists a constant C, depending only on n and p, such that

|ul o= mry < CllDul| Lo wny for all u € C}(R")

e Theorem: (Estimates for W'?(Q), 1 < p < n) Let Q be an open, bounded
subset of R™ with 9Q C!. Assume 1 < p < mn and u € WP(Q). Then u € LP (Q)
with

[l o () < Cllullwro)
where C' is a constant only depending on n, p, §2.

e Theorem: (Estimates for W, ?(Q), 1 < p < n) Assume € is a bounded open

subset of R™. Suppose u € Wol’p(Q) for some 1 < p < n. Then, we have the

estimate
1wl ey < CllDul|r (o

for each ¢ € [1,p*], the constant C' depending only on p, ¢, n, €.

e Theorem: (Morrey’s inequality) Assume n < p < oo. Then there exists a
constant C', depending only on p and n, such that

H“HCO”(R") < OHUHWLP(Rn)
for all u € C'(R™), where v := 1 —n/p.

e Theorem: (Estimates for WP, n < p < o0) Let Q be a bounded, open, subset
of R, and suppose 0f2 is C'. Assume n < p < oo and u € W'?(Q). Then u has
a version u* € C%(Q), for y =1 — o, with the estimate

[ul[con@ < Cllullwir@

The constant C' depends only on p, n, €.

This theorem essentially allows us to replace a Sobolev function, v € W? with
p > n with its Holder-continuous counterpart.

Sobolev Embeddings (Compactness) (Evans Sec. 5.7)

e Definition: Let XY be Banach spaces, X C Y. We say that X is compactly
embedded in Y, denoted
XCcCcyY

provided

— |lully < C|lu|lx(u € X) for some constant C.

— Each bounded sequence (ug)$2, in X is precompact in Y, i.e. boundedness
in X implies a convergent subsequence to a limit in Y.
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e Theorem: (Rellich-Kondrachov compactness theorem) Assume €2 is a bounded
open subset of R” and 90 is C'. Suppose 1 < p < n. Then,

Wtr(Q) cc LYQ)

for each 1 < ¢ < p*.

Poincare’s Inequality (Evans Sec. 5.8.1)

e Theorem: (Poincare’s inequality) Let € be a bounded, connected, open subset
of R", with a C*! boundary 0. Assume 1 < p < oo. Then there exists a constant
C, depending only on n, p, €2, such that

lu = (Wallr@) < CllDullrr@)

for each function u € W'?(Q).

Difference Quotients (Evans Sec. 5.8.2)

e Definition: Assume u :  — R is in L}

L (Q) and V cC Q. Then the -
difference quotient of size h is

DhMu(x) = uz + he}i) — u() (1=1,...,n)

for x € V and h € R with 0 < |h| < dist(V,092). We then define the difference
quotient to be the vector

Dhy = (Dfu, el Dhu)

n

e Theorem: (Difference quotients and weak derivatives)
1. Suppose 1 < p < oo and u € WP(Q). Then for each V CC Q
1D ullze(vy < CllDul| o)

for some constant C and all 0 < || < 3 dist(V, 092).

2. Assume 1 < p < co and u € LP(V). Then u € W'P(V) with || Du| ey <
C.

Sobolev Dual Space (Evans Sec. 5.9.1)

e Definition: We denote by H~!(Q), the dual space of H}(2). We denote by
(-,-) the pairing between H () and H} ().
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e Definition: If f € H!(Q), we define the norm
Uy = sup { (frw) < w € HHQ), [ullmyey <1}

e Theorem: (Characterization of H™1) If f € H'(Q), then there exists
O Y o f™in L3(Q) such that

_ / oo+ flogde  forve HY(Q)
Q i=1

and we identify f € H™'(Q) with f©—->""  fi

Elliptic Equations (Evans Sec. 6.1.1)

e Definition: Our focus is on the boundary-value problem

Lu=f inQ
u=20 on 0}

where (2 is an open bounded subset of R” and u :  — R is the unknown. Here,
f:Q — Ris given and L denotes a second order partial differential operator
having either the form

n

Lu=— Z (a7 @y, o T Z V' (z)ug, + c(x)u (divergence form)
ij=1
or .
Lu = Z uxlxj + Z b (z)uy, + c(x)u (nondivergence form)
i,j=1

for given coefficient functions a, b?, ¢

e Definition: We say a partial differential operator L is uniformly elliptic if
there exists a constant € > 0 such that

n

> a(z)&g > 06

3,j=1

for a.e. x € Q2 and all £ € R™.
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Weak Solution (Evans Sec. 6.1.2)

e Definition: The bilinear form B[, -] associated with the divergence form ellip-
tic operator L above is

Blu,v] := / Z aug, vy, + Z bug,v + cuv dx
Q=1 i=1
for u,v € Hy(Q).

e Definition: We say that u € H}(Q) is a weak solution of the boundary-value

problem
Lu=f inQ
u=20 on 0f2
if
Blu,v] = (f,v)

for every v € H}(Q), where (-, -) denotes the inner product in L?*(2).

e Definition: More generally, u € H}(Q) is a weak solution of the boundary-
value problem

L= oS f o
u=>0 on 0f)
if
Blu,v] = (f,v)
for all v € H}(Q) where (-,-) denotes the pairing between H () and HJ ().

Lax Milgram Theorem (Evans Thm. 6.1.1)

e Theorem: Let H be a real Hilbert Space and assume that
B:HxH—>R
is a bilinear mapping, for which there exists constants a, 8 > 0 such that

L. |Blu,v]| < allul|g||v||# for u,v € H.
2. Bllu||%} < Blu,u] for u € H.

Finally, let f : H — R be a bounded linear functional on H (i.e. in the dual of
H), then there exists a unique element u € H such that

Blu,v] = (f,v)
for all v € H.

27



Regularity for Elliptic PDEs

We will assume that @ C R™ is bounded and open, u € Hj () is a weak solution of

Lu=f inQ
u=>0 on 02

where L has divergence form

n

Lu=— a” (z)ug,) o T b (x)uy, + c(z)u
> (a7(@)ur,) Z Z

ij=1
e Theorem: (Interior H?-regularity) Assume
a? € CHQ) bee L) dj=1,....n

and f € L*(Q). Then u € H}

2.(€2) and for each open set V' CC €2, we have the
following estimate.

ullzzvy < C (1|2 + lullzz@)

e Theorem: (Higher interior regularity) Let m be a nonnegative integer and
assume

a’, b’ ce C"TH(Q) ,7j=1,...,n

and f € H™(Q). Then, u € H{:*(Q) and for each V' CC , we have the
estimate

[ull zrms20ry < C (1f |l m (o) + ull @)

e Theorem: (Infinite differentiability in the interior) Assume
al b ceC®Q)  i,j=1...,n
and f € C*(Q). Then u € C*.
We actually only needed v € H*(Q2) instead of Hj(f2) in the above theorems.

e Theorem: (Boundary H2-regularity) Assume
a? € CHQ), V,ce L®(Q) i,j=1,....n

Further assume f € L*(Q) and 9Q is C%. Then u € H*(Q) and we have the
estimate

ullr2) < C (1 F 12y + ullz2@)

e Theorem: (Higher boundary regularity) Let m be a nonnegative integer and
assume o B
a’, b’ ce C"(Q) ,j=1,....n
Further assume f € H™(Q2) and 99 is C™*2. Then v € H™™(Q)) and we have
that estimate

ull grmr2gy < C ([[fllrmie + [ullr2@)
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e Theorem: (Infinite differentiability up to the boundary) Assume
a? b e C®Q)  i,j=1,...,n

Further assume that f € C=(Q2) and 99 is C*. Then u € C=(1Q).

Maximum Principle for Elliptic PDEs

e Theorem: (Weak maximum principle) Assume u € C?(2) N C(Q) and ¢ = 0
in €.

1. If Lu <0 in €, then

maxu = maxu
Q a9

2. If Lu > 0 in €, then

minu = min u
a E19)

e Lemma: (Hopf’s lemma) Assume u € C*(Q)NCY(2) and ¢ = 0 in Q. Suppose
further that Lu < 0 in © and there exists a point 2° € 99 such that

u(z?) > u(x) for all x € Q

Assume finally that ) satisfies the interior ball condition at z°; that is, there
exists an open ball B C  with 2° € 9B.

Then,
ou

o
where v is the outward unit normal to B at 2°. If ¢ > 0 in €, then the same
conclusion above holds, provided

(%) >0

u(z%) >0

e Theorem: (Strong maximum principle) Assume u € C*(Q) N C(Q) and ¢ = 0
in (2. Suppose also that €) is connected, open, and bounded. Then,

1. If Lu < 0in © and u attains its maximum over  at an interior point, then
u is constant within €.

2. If Lu > 0 in Q and u attains its minimum over Q at an interior point, then
u is constant within €.
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2 Part A

Find all continuous nonnegative functions f on 0 < ¢ <1 such that

ros [ ' f(s)ds

Proof. Notice that the condition above can be rewritten as

f(t) < 0—|—/0tf(s)ds

Thus, by Gronwall’s, f(t) < 0, so only f = 0 satisfies the condition. O

Brauer 1.7.3

Let f(t) be a nonnegative function satisfying

t
fit) <Ky +e(t—a)+ Kg/ f(s)ds
on an interval a <t < 3, where €, K, Ky are given positive constants. Show that

0 < K eket-a) | & (pKa(t-a) _
f( ) > A€ + Ko (6 )

Proof.

1. Let '
Ult) =K1 +e€(t—a)+ KQ/ f(s)ds
so that f(t) < U(t). )
2. Next, taking the derivative, we have
U'(t) = e+ Kaf () < e + KU (2)
U't)— KU(t) —e <0

We'll force a product rule by multiplying by e %2(=%) Note that —K,(t — ) and

— Kt have the same derivative. Thus, we have
e_KQ(t_a)U'(t) - ng_K2(t_a)U(t) — ee Helt=0) <
d
7 [U(t)e_m(t_a)} — e H2ltm0) <
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3. Using FTC, we’ll integrate over [«, t| to get

Ut)e—K2t=0) _ 7 £ Rt _ €
(t)e () + ¢ T =
U(t)e 5209 < U(a) — < (e_KZ(t_O‘) —1)
Ky
U(t) < Kpef=e) 4 = (Kel=e) _q)
K

and since f(t) < U(t) by hypothesis, we are done.

Gronwall’s Inequality Differential Form

Let v,u be continuous functions on the interval o <t < 3. If u is differentiable on
(av, B) and satisfies
u'(t) < v(t)u(t) t € (a,p)

ult) < ula)exp { /a tv(s)ds}

w(t) = exp {/atv(s)ds}

so that w(t) > 0 and w(a) = 1. Next, observe that

then

Proof. Define

oy _w'(t)
w'(t) =w(t)v(t) = o(t) = )
so by substitution,
u'(t) <u(t)u(t) < U(gzl)(t)
w(t)u'(t) — u(t)w'(t) <0
w(t)u (Fw(_t)z]g(t)w (®) <0 (multiply by 1/[w(#)]? since w > 0)
% <%) <0 (force quotient rule)
Now integrate over [a, t] to get
u(t)  u(a)
w(®)  w(a) ="
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Brauer 1.7.4

Find all continuous functions f(¢) such that

F(@)? = /0 f(s)ds t>0

Proof. We first notice that f(0) = 0. Next, let us consider the following cases

1. If f(top) > O for some ty, > 0, then there exists an open ball B, (#y) for which f > 0.
Thus,

fO) = VI te Bt)

is differentiable on B, (t() so taking the derivative of our original equality,

2f () f'(t) = f(t) (t € B.(to))
2f'(t) =1 (f(t) >0)
ft) = %t +c

and ¢ = 0 since f(0) = 0.

2. If f(to) < O for some ty > 0, then there exists an open ball B,(ty) for which f < 0.
Thus, by a similar process, we again have that

1

f(t):§t

but since f(0) = 0, it is impossible to have f < 0 since ¢ > 0 and our slope is positive.

Thus, since f is continous on [0, 00), we have only the case below:

f(t):{o t<a

1
it t>a

for a € [0, o). O

Write the scalar linear equation 3™ +ay (t)y™ Y +- - +a,_1(t)y +a,y = b as a system
y'=AQ)y +g(t)

Proof. We first see that y™(t) = —ay(t)y™ V() — - - — an_19/(t) — an(t)y + b(t). Now
defining
B=9 =Y = Yo=Y = s Y1 =y =y g =y =
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Then we construct the system,

Y1 = Y2
yé =Y3
Y1 = Yn
Y = =1 ()1 — -+ — a1 (t)y2 — an(t)yr + b(t)

Thus, in matrix notation, we have

A 0 o !
y/2 0 In—l Y2 0
y7/1—1 0 Yn—1 0
y —ap(t) —anp_1(t) —ag(t) ai(t) 0 Yn b(t)
i L g Lol L\
y' A(t) y g(t)
where I,,_; denotes the (n — 1)-dimension identity matrix. O

Brauer 2.3.3

Suppose A(t) and g(t) are continuous for —oco < ¢t < 0o and that
/ A@)|dt < oo and / l9(8)]dt < oo

Show that the solution ¢(t) of ¢y = A(t)y + g(t) exists for —oco < t < 0o and compute
a bound for |4(t)| valid for —oco < t < 0.

Proof. Since A, g are continuous for all ¢ and F(t,y) := A(t)y + g(t) is continuous on
D={(t,y): —oo <t < 00,—00 <y <00}

then by theorem 1.1, a unique continuous solution exists for —oo < ¢ < oo so long as
|p(t)] < oo for all ¢.

To show ¢ is uniformly bounded, we first apply theorem 2.1 on a finite interval —n <t < n
on which a unique continuous solution ¢(t) exists with ¢(tg) = n, |to] < n, and || < oo.

33



Since ¢ is a solution of the linear system, we have

to

/t o/ (5)ds /t A(s)é(s)ds + / o(s)ds (ty < t <)
o) = olta) = [ A)o(s)ds + [ gls)is (FTC)

60 < Il + / |A(s)16(s)ds + / 19(s)ds (triangle ineq.)
<+ [ lolds+ [ 1awlocslds (expand)

ool < (1 + [ laolias ) e { / A(s)lds (Gronwall

< (s [ tatolas)eso{ [ 14010 (expand)

< 00

Thus, ¢ is uniformly bounded for all t € (—o0, 00), so the solution may be extended to all
t € (—00,00). O

Corollary of Brauer Thm. 2.2

A fundamental solution to the autonomous linear system, X'(¢) = AX, is a nonsingular
matrix-valued function, ® : R — My, 4, with ®'(t) = AdD(¢).

(a) Show that U(t) = e is a fundamental solution satisfying ¥(0) = I,,, the identity
matrix.

(b) Show that X (t) = ®(t)®(0)~' X is a solution to the IVP, X'(t) = AX, X(0) =
X,

(c) Show that any fundmantal solution is of the form ®(t) = eA*M, for some non-
singular matrix M.

Proof.

(a) First, we see that

t=0
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Next, we’ll show that W is a solution to the system.

d A?t?
V()= — |I+ At
®) dt{ AT 1

A%t A3t?
=ATar Ty

()

J=0

— AU(t)

Last, since W(0) = I,,, then det W(0) = 1, so by Abel’s formula, det ¥(¢) > 1 for all ¢,
so ¥ must be fundamental.

(b) It is clear that X (0) = X, and

X'(t) = ' (1)®(0) ' Xp = AD(H)®(0) ' Xy = AX ()
(c) Let ® be a fundamental solution of the above system. Then since ¥(t) = e is also a
fundamental solution, then by definition, the columns of W(¢) are linearly independent
for each ¢ and thus form a basis for the set of solutions of our system. Let W;(t), ®;(¢)

denote the jth column of U and @ respectively. Then there exists constants (c;x)7_,
such that

Cj,l Cj,l
n Cj72 Cj72
Oi(t) = Wi(t)ejp = (V) -~ V() = U(1)
k=1
ij ij

k=1 k=1
C1,1 G Cn,1
C1,2 Cj2 Cn,2
= | w) vt | w(t)
Cln Cin Cnn
C1,1 Cn,1
= U(t) :
Cin Cn,n
b

Now, to show that C' is nonsingular, since ®, ¥ are both fundamental solutions, then
det ®(t) # 0, and det U(t) # 0 for all ¢, so

det(C) = det(T(0)~'®(0)) = det(I,3(0)) = det B(0) % 0
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Brauer 2.7.3

Show that if all eigenvalues have real part negative or zero, if those eigenvalues with
zero real part are simple, and if j:;o lg(s)|ds < oo, then every solution ¢(t) of

Yy =Ay+g(t)  ylto) =n

on 0 <ty <t< oo is bounded.

Proof. Since A is a constant matrix, then we know by variation of parameters, that the
unique solution ¢ is

t
o(t) = eA(t_tO)n + 6At/ e_Asg(s)ds

to

Thus,
WMSMe%wwﬂ+wmwwM/ 9(s)|ds
to

and by theorem 2.10, since 0 > R{\;} for k = 1,...,n where \; are the eigenvalues of A
(Ax not necessarily distinct), then there exists a constant K > 0 with

’€At| S Ke()t - K

Thus,
!dMSKWAW@+/iM$W)<M<w

to

for some M > 0, 50 ||}|| oo ([tg,00)) < O©- O

Brauer 3.1.2

Prove that the initial value problem

y' +g(ty) =0,  y0)=w, ¥(0)==2

where ¢ is continuous in some region D containing (0, o) is equivalent to the integral
equation

y@=%+m—luﬁm@mww
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Proof. We first see that the latter implies the former since

/10 =~ [ (¢~ )als.uls)as

(3] [ i)

— _E (/0 9(3, y($)>d8 —+ tg(t, y(t)) — tg(t’ y(t))) (FTC)

= _g(ta y(t))
To show that the former implies the latter, we first integrate our IVP.
| v+ amumdr =y (s) -y + [ glrytrar
0 0
—y/(s) =+ [ glru(r)dr
0
Then, we integrate again,
t s t s
[ v =0t [ otrgtrards = yie) = y0) = st + [ [ gtrytraras
0 0 0o Jo
t s
—y0)~wo—t+ [ [otmyrndrds
0o Jo

Now using integration by parts on the outer integral (and choosing our u to be the inner
integral, v = 1), we have

/ot (/oS g(7, y(ﬂ)dr) ds = s /oS 9(my(r))dr 5=0

=t [ otratmr = [ sots.uts)is

:/0 (t—5>g(s,y(3))d5 (relabeling)

s=t

- [ sats.utonas

Plugging the above into (x) gives the desired result. O

Brauer 3.1.13

Consider the integral equation

y(t) = e + a/ sin(t — S)Mds aeC
t

37



Define the successive approximations

{¢0(t) =0

Pn(t) = € +a [ sin(t — s)—¢";21(s) ds

(a) Show by induction that

n—1
6u(t) = ()] < ﬁ Lel,00)n €N

(b) Show that the ¢,, converges uniformly on [1,00) to a continuous function ¢.
(c) Show that the limit ¢ satisfies the above integral equation.

(d) Show that the limit ¢ satisfies

[6(1)] < el
Proof.  (a) For n =1, we see that
) 00 ) s ] a 1-1
on(0) = ou(0)] = for(0] = |e* [ sin(e = ) 2] = e =1 = AN
Assuming the result holds for n, then for n 4+ 1, we have
CNDp(8) — Op_1(s
rialt) = )] < Jaf [ 120 = 2ot
t
> Jav! . . .
< o ds (inductive hypothesis)
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(b) Let € > 0 and consider n,m, N € N with n > m > N.

n—m—1

6 (t) = o) < Y 1dn-i(t) = dn1-i(t)]

S
Il
o

3
L

’a|n—1—k
(n—1— k)ltn—1-k

(]

k=0
n—m—1
‘Oé'n—l—k )
< Z OS] (since t > 1)
k=0
n—N-1
’a|n—1—k
< S bt I
- Z (n—1—F)!
k=0
n—N-—1 n—1—k
1 lale ) -
< Stirling’s approx.
> QW(n—l—k)(n—l—k ( g's approx.)

I
Il
| o

n 1 n—1—k
< jale
n—1-—k

bl
o

Thus, choosing N > |a|6 , we have

n—1

|¢n( - |< €k<zek:

=N k=N

<€

o

Thus, (¢,)52, is uniformly Cauchy, and hence converges uniformly by Cauchy’s cri-
terion to some ¢. Moreover, since ¢, is continuous for all n, then ¢ must also be
continuous.

(c¢) To show ¢ satisfies the given integral equation, observe

e’ + oz/OO sin(t — 5)¢(2)d5 = e + oc/oo sin(t — s) lim Onl5) ds

S n—o0 82

= lim (e” + a/oo sin(t — s) ¢zgs>ds) (unif. conv.)

= e, $en0)
= 4(0)
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(d) Observe that

Pk (t) = Pra(t)

k=1

< Z | o (t) — dr—1(1)]

o

(k — 1)lgh1

()

!

A A
M T

=

I
) s
Ry

VAN
Cb;
L

Tonelli Iteration Scheme

Fix T'> 0,n € N and define the Tonelli sequence by

for the initial value problem

7(t) = f(t,2(@)  2(0) = w0

Using this iteration scheme as an alternative to the successive approximations, state
the proper existence theorem and prove it.

Solution:  Theorem: Suppose f and Jf/0z are continuous on the closed rectangle
R =[—a,a] X [xg—b,z0+ V]

Then the Tonelli sequence converges uniformly on the interval

I=10,c| c:min{a,T,ﬁ}

to a solution of the initial value problem given above.
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Proof. We'll first prove that xzj is well-defined for all £ € N. If ¢ < %, then z, = z¢ for

all t € [0,¢] and it is clear that (¢,29) € R for t € [0,¢]. Now, if ¢ > T and w, fails to

be defined on [0, ¢, then there exists some ¢’ € (L, c| such that z(t') & [xo — b, 20 + b], s0
|z (') — 2| > b. However, observe that

T

/ T s a(s))ds

|2k (t') — ol =

T

< [ i)

T
<1l (¥ - 7)

T
<l (e~ %)

/]l T
< p_ N/ leor
b k

<b
a contradiction. Thus, ;. is well-defined for all ¢ € [0, ¢| for every k € N

Next, we will show that xj is continuous on [0, ¢|. Indeed, if 1,15 € [%, c] with t; < to,
then

ot — ) < [ "7 mo)lds < 1 F ekt~

t1

=3

thus showing that x; is continuous on [%, c}. It is clear that the same estimate holds for all
t1,t2 € [0, ¢], so zy, is continuous on [0, ¢| for every k € N.

Now, let ¢ > 0 and let n > m > N all be natural numbers with % < ¢. Since f,0f/0x
are continuous on R compact, then we know that f is Lipschitz and bounded on R. Now let
us observe the following case:

For t € [0,¢], if ¢t > L, then we have that

(1) — 20 (£)] = / T f(s,2a(s))ds — / 7 (s, ()

+

< / 7 f(s,a(s))ds / 7 F(5,20()) — £(5,2m(s))ds

38 39

S/t; |f(8,:zcn(s))|ds+/0_m |f(s,2(8)) — f(s, 2m(s))|ds

T T m
< [ flloo <— - E) +/0 Dlz,(s) — xy(s)|ds (Lipschitz)

m
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where D is the Lipschitz constant of f. Next, since |(z, — z,,)(t)| is clearly nonnegative and
T, is continuous for all n, then we may apply the Gronwall inequality to get

mﬂ%wMMSHNmC%—g%m{AH%M%

— £l (Z _ Z) eP(=37)

Thus, if we further suppose N > w, then for n,m > N, we have

TDc
| fllocTe _.

[T (t) — 2m(t)| < N

We'll now show that this choice of N also holds to show that (x,) is Cauchy for all
t €0,

Indeed, if t < %, then (z,,) is clearly Cauchy. If ¢ € [%, %], then

Thus, (z,) is uniformly Cauchy, so it must converge uniformly to some function z. To
show that x satisfies the integral equation

x(t) = xo +/0 f(s,z(s))ds

we see that . .
ral) =+ [ fls,zaloNds = [ flsimao)ds
0 t—T
and since
t
i | [ fsvma(o)ds| < lm |l =0
n—oo | [, T n— 00 n
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we must have that
¢
lim z,(t) =xo+ lUm [ f(s,z,(s))ds

n—oo n—oo 0
4
x(t) = o —i—/ f(s,z(s))ds (f continuous)
0
Next, if (¢,) is a convergent sequence to t, then

|2(tn) = ()] < [2(tn) = n(tn)| + |20(tn) = 2a(t)] + [20(t) — 2(1)]

and each of the three terms above can be made arbitrarily small by continuity of z,, and
uniform convergence of z,, to x, so  is continuous on [0, ¢|]. Last, it is clear that 2(0) = zq
since (z,(0)) is the constant sequence ().

]

Note that we can actually relax the condition that df/dx is bounded on R. Instead of
using Lipschitz and Gronwall’s to get our result, we need to employ Arzela-Ascoli.

Also, this theorem is sometimes referred to as the Cauchy-Peano (existence) theorem.

To remark about why we don’t have an issue of circularity with the Tonelli sequence
consider the following argument for why z,,(¢) is well-defined for all ¢ € [0, T

xn(t) = 9 t€[0,7/n]
2a(t) = zo + [T f(s,20)ds =y (1) t € [T/n,2T/n]

t—T/n

T (t) = xo + f(s,x,(s8))ds = xg + fg_T/n f(s,y1(s))ds =: yo(t) t € [2T/n,3T/n]

7,(t) = 20 + fot*T/n f(s,yp_1(s))ds =: yi(t) e |:k'_T (k—l—l)T}

n’ n

W

At each stage of the above calculation, x,(t) is well-defined (since all terms involved are
ultimately constants), so we can induct on k to show that xz,(t) is well defined for all t € [0, T'].

Strogatz 3.4.14

Consider the system 2’ = ra+a®—2°, which exhibits a subcritical pitchfork bifurcation.
1. Find algebraic expressions for all the fixed points as r varies.

2. Sketch the vector field as r varies. Be sure to indicate all the fixed points and
their stability.

3. Calculate r,, the parameter at which the nonzero fixed points are born in a
saddle-node bifurcation.
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Solution:  Setting 2/ = 0, we see that roz + 3 — 2% = x(r + 2% — 2*), so the second term
is quadratic in 22 and 2* = 0 is always a fixed point.

,  —ldT+dr
—2

\/—1j:\/1+47"
g=d4y — YT

T

—2

Now, let us consider some cases:

(1) Forr < —;11, the discriminant will be negative, producing no additional fixed points.
(2) At r = —}1, the discriminant is zero, so we gain two additional fixed points, :t\/g )

(3) For r € (—1,0), no imaginary terms arise, so we gain 4 additional fixed points.

(4) For r =0, —14+/1 4 4r = 0, so we have only have 2 additional fixed points since this
zero merges back with the existing x* = 0.

(5) Last, for r > 0, we have the 2 fixed points from the previous case.

We note that r, = —1—11 since at that parameter and two fixed points are born, at j:\/g )

As r increases past r,, each of these fixed points then split into pairs of fixed points.

' x

Figure 1: Left: r < —%, Right: r = —%
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Figure 2: Left: r € (—}1,0), Right: » >0

Strogatz 3.4.10

For the system below, find the values of r at which bifurcations occur and classify
those. Finally, sketch the bifurcation diagram of fixed points r vs x*.

x?)

I
x —T:L'—|—1+x2

Solution: Solving ' = 0, we have
I((T—I—l)ZL‘Q—I—T) =0

So we have a constant fixed point * = 0. Examining the other term, we have

*2 -r
= —1
. r—+1 r#

In order to have fixed points, we require the right side to be nonnegative, so let us consider
cases for 7r:

1. If r > —1, then 7 +1 > 0, so for =5 > 0, we have r < 0. Thus, the valid interval
which produces fixed points is r € (—1,0] with fixed points

—r
r+1

¥ =+

2. If r < —1, then —r > 0 and r + 1 < 0, so their quotient is negative so no additional
fixed points come from this case.
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Using the above information about the fixed points, we see that at r, = 0, represents a
pitchfork bifurcation since the split that happens occurs to an existing bifurcation point.
In order to see which pitchfork bifurcation occurs, we will check the stability of x* = 0 for
values of r > 0. Starting with the left of 2* = 0, for » > 0, we have

3

x
x =rx+ 5 <0
2<0 L+22]
so x* = 0 must be unstable since points on the left are moving away from it until r = —1, at

which the two branches disappear. Thus, we must have a subcritical pitchfork since x* =0
will switch from unstable to stable at r, =0

Figure 3: Bifurcation Diagram
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3 Part B

Evans 2.5.1

Write down an explicit formula for a function u solving the initial value problem

u+b-Du+cu=0 R"x (0,00)
u=g R"™ x {t =0}

Solution: Given the observation

%[edu] = e“(cu + uy)

we multiply our IVP by e and letting v = e“u, we have

v +b-Dv=0 R"x (0,00)
v=ceyg R™ x {t = 0}

Thus, using our solution to the transport problem, we have that

v(z,t) = gl — th) & |u(x,t) = e “g(x — tb)

Evans 2.5.2

Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if O € M,,«,, is an
orthogonal matrix and we define

v(z) == u(Ox)

then Av = 0.

Proof. Let O = (a;;)? Then

4,j=1"

OZ[‘ = <zn: (Ijz‘ZL‘i)

=1 j=1
so we'll denote y; = 7" | ajix; so that u has the form

u=u(y(z1,. .., Tn), o, Yn(T1, ..., Tp))

47



Then taking the partial w.r.t. x;, we use the total derivative:

Av = Z ZzﬂkZayay
k= k131 i=1 J I
=23

Je=1

n

> ajan)”

yjayz 1

By orthogonality, we know that > ajr(ar;)” = 1iff j = k and it is zero otherwise. Thus,
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Proof. Begin by defining
o) = ulwisty)
OBy ()

~ na(n)r /BBT(m) uly)as ()

1
= —_1/ u(z +r2)r"tdS(2) (Change of variables (Polar))
8B;(0)

na(n)rr

_ / (@ +12)dS(=)
9B1(0)

na(n)
= ][ u(z +1rz)dS(2)
9B1(0)

Next, taking the derivative with respect to r,

¢ (r) = faBl(o) Du(x + rz)zdS(z)

= ][ Du(y)y — de(y) (change variables back to original)

9B (z) r
ou . .

— ][ —dS(y) (Du(y)~= is the unit normal)
OB (x) v

. Au(y)dy (Gauss-Green Theorem)

" J B, (z)
=0

Thus, ¢ is constant in 7, so
/8 o, M) = 60) = limott) =l f  ()dS(y) = ()

hence showing the result over a sphere. To show the result over the ball, we use polar
coordinates,

/Br(x) u(y)dy = /07" (/8&(3;) u(y)dS(y)> dt
= [ (natoe oo w)as(y) ) a

= / no(n)t" tu(z)dt (mean value formula over the sphere)
0
= a(n)r"u(z)

Thus, dividing «(n)r™ to the other side, we have
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Evans 2.5.3

Modify the proof of the mean-value formulas to show for n > 3 that

WO = o)+ g | (e s ft

provided
~Au=f B,0)
u=yg 0B,.(0)

Method 1

Proof. From the proof of the mean value formula, we know that if we define ¢(r) =
f@BT(O) u(y)dS(y), then

¢'(r) =~ Au(y)dy

. J B,(0)
The trick now is to use the fundamental theorem of calculus in 7 to get us the u(0) and ¢(r)
terms.

:/ @' (t)dt, for0<e<r

- /: %a(i)t" ( . Au(y)dy) dt
= et [0 (], i) a

To get the rest of the terms, we’ll use integration by parts on the outermost integral. Con-
tinuing the equality from above, we have

t:r]

t=€

1 T (d 1
= - — A t+ | —" A
W[ [k, u@»dy)d G AR

- e / 2o /a 5 dt+mr2_” / By
‘@76 ” BEm)A“( i
- ) ”/dBtm D San) <n—2> 0 > 7O
e [ gy
fl(2 —n)a(n) B.(0) .
J
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Considering each integral separately, we’ll start with J.
1

Jo——— d
nZ e’ Jue WY
1 2—n
=< n(n — 2)04(”)6 /B(o,e) Fldy

1 -n
S 1%@@
HfHOO 6277106(”)671

IN

- n(n —2)a(n)
= niL’J:[OOQ)g? —0 as € — 0.

Next, we see that [ is already in the desired form, so we’ll move onto H.

H= ——— / 2 "/ f(y)dS(y
2 — n aBt
= y)dt
n(2 —n)a(n) / /03,5 0) 2
/ / _2 dS(y)dt
8Bt(0) tn
1 €
/ / 2 y)dt — / / / (i) dS (y)dt
8B4(0) f” - 6Bt(0) tr
f(y) / /
n(2— n)a(n) /;r 0) ly|"—2 6Bt(0) 75
Note above that y € 0B,(0) we have |y| = r. Next, we’ll look at K.
K| < Ml /1o // sy
n(n —2)a 9B, (0)
2

=n<n”_f!‘” % "(/m ) "

n(n — 2)a(n)

£l
—0
n—2

| /\

ase — 0

Thus, we have
lim () — é(e) = lim(H + 1 +.J)

P S S () O SR B
Ar) —u(0) n@—nmmuﬁn|wzd“+ m—mwml%mwﬂﬂ”@

u(0) = ](iBT(O)g(y)dS(y) + m /BT@ (M% - T%) f(y)dy
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Method 2

Proof. Using Poisson’s formula for the ball, we have
r? — Jaf® 9(y)
uw) =" [ I s+ [ )G o)y
na(n)r Jop, o | =yl B, (0)
Let us define -
g

Then we note that Z is the point dual to z if x € B,(0), so

Glr,y) =y —2) = 0(lzlly — 7)) =y € B(0),x #y

z € R™ {0}

_r =P _9y) ) — (el —
w) =i o S [ ) (@l ) (el 2) dy

_ r’ — |‘T|2 / g(y) dS(y)
9]

na(n)r B,(0) |z —y|"

1 1 1
" n(n=2)a(n) /r<o> ) <\y —a"? ey - :z)|”—2) W

Our goal now is to evaluate u(0), but we note that ®(z) has a singularity at z = 0, so instead
we must take the limit as || — 0 (equivalent to lim,_,o since ® is radially symmetric).
Observe that

lim ||z|(y — z)| = lim ||z|y — |z|Z
|z[—0 |z|—0
= lim lim |(|z|y — |z|Z
|z|—=0 |z|—0
= lim |0 — lim |z|Z
|z|—0 |x]—0
= lim lim [(|z|Z
|z|—=0 |z]—0
re
— 1 I
\xlgo |$|\:r;]2
=7
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Thus,

u(0) = " 9(y) 1 1 1
O = ol Lo 05 =0 fy 0 (s~ 5
1 1 | 1
= () o o) gdS + nln = 2)a(n) /T(O) f(y) (W - 7"”_2) dy

= S + ———— IR S
B 30 Sy 0 (e = )

Evans 2.5.4

Give a direct proof that if u € C?(2) N C(Q) is harmonic within a bounded open set
), then

maxu = maxu
Q Elg)

(Hint: Define u, = u + €|z|? for € > 0, and show u, cannot attain its maximum over
at an interior point.)

Proof. Define u, := u + €|x|* and suppose that there exists 20 = (29,23, ...,2%) € OQ° such

that u. attains its max at 2°. Next, since u is harmonic, then
Au, = Au+ 2en = 2en > 0

However, we now define f; : R — R by

fi(z) = u (29, ... ,x?fl,x,:cgﬂ, oY)

so f; attains its max at z = x?. Hence we know that fj”(x?) < 0. Thus, taking the Laplacian
at xo,
0 € 1
Bufa®) = 30 T ) = Y- fla) <0
i=1

Jj=1

which contradicts Awu, > 0. Thus, no such z° may exist, so

maxu = maxu
Q a0

We then see that

max u < max u, = maxu, = maxu + €|z|?
5 0 B19) a0

Taking € — 0, we have

maxu < maxu
Q o0

and since 0€) C 2, we know that

maxu < maxu
o0 Q
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Evans 2.5.5

We say v € C%(Q) is subharmonic if

(a) Prove for subharmonic v that

(b) Prove that therefore maxg v = maxgqg v.

(d) Prove v := |Dul? is subharmonic whenever u is harmonic.

—Av <0, in Q.
v(z) < ][ v(y)dy, for all B.(z) C Q.
By ()

(c) Let ¢ : R — R be smooth and convex. Assume u is harmonic and v := ¢(u).
Prove v is subharmonic.

(a)

Proof. Define ¢(r) := faB(m " v(y)dS(y). Then we know that ¢'(r) = %fBT(m) Av(y)dy.
Since —Awv < 0, then ¢'(r) > 0 for all r € RT, so ¢ is increasing in r. Thus

r—0

o(x) = lim é(r) < B(r) = ]g  v)as).

Extending to B,.(x) by polar coordinates, we have

/B(m’r) v(y)dy = /07" no(n)t" ! (]éBt(x) v(y)dS(y)) dt > /Or na(n)t" Yo(z)dt

= na(n)v(z)%

= a(n)r"v(z).
Hence, v(z) < fB(m) v(y)dy. O

Proof. Suppose there exists zp € € such that v(zy) = M = maxgv. Then for r <
dist (o, 09),
M =v(xp) < ][ v(y)dy

B(z,r)

Hence, v(y) = M for all y € B,(x). Now, consider the set A := v~ }({M}). We have
just shown that A must be open. Next, since {M} is closed and v is continuous, then
A = v Y ({M}) must be closed as well. Assuming  is connected, then A must either
be @ or €2, but we know that A # @, so we are done. n
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(c) Proof. Observe,
= Z ¢" () (ug,)* + ¢ (u)tlya, (chain rule)

= ¢"(u) Z(ux)2 (since Au = 0)
>0 (¢ convex = ¢" > 0)

Thus, —Av < 0. O
(d) Proof. Observe,

& Pu \°> Ou 0 [0

A(|Dul?) = 2 o Y [Z

(1Pufy =2 (axjaxi) "o om (axg)
0

Thus, —A(|Dul?) < 0. O

Evans 2.5.6

Let €2 be a bounded, open subset of R”. Prove that there exists a constant C' depending
only on €, such that

maxfu] < € (o] + mx 1)
Q o0 Q

whenever u is a smooth solution of

—Au=f in )
u=gq on 02

Hint: Consider —A <u + % maxg ‘f’)
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Proof. Observe that

2
A( +|—max|f|) = Au + max | f|
2n Q
= —f + max|f| (z € Q)
Q
>0

Thus, —A (u + % max§|f|> <0, so (u + % maxg |f|) is subharmonic. Thus, by Evans
9.5.5,
maxu < max | u+ — i " max | f| | = max u+!max|f|
Q 0 2n o 09 2n  Q

< maxg + [ max|z[? ) max|f]
~ I%%Xg 2n I%%X €T mﬁax

<
<C (r%gx lg] + max \f\)

Now, let v := —u and we see that this produces an equivalent system
—Av=—f in Q
v=—g on 0f)

. . 2 . .
Then, by a similar process as above, we have (U + % maxg | f |> is subharmonic, so

2 2
max(v) < max ( v+ — i max |f| | = max ( v+ — i max | f|
Q Q 2n 9 o0 2n g

Q
<max|—g[+ 1111 | ? max | f
a?z gl 2n a%x 7| 3 /]

<
<C <r%g><\g\ + mgX\fI)

Thus,
max(—u) < C (max lg| + max |f|)
Q o0 Q
but since maxg(—u) = — ming u. Thus,

minu > —C (max lg| + max ]f|>
Q o0 Q
Thus, combining both results and then taking maxg, we have

max o] < € (gl + mx 1]
Q o0 Q

56



Evans 2.5.7

Use Poisson’s formula for the ball to prove

r+ |z

r—lal
(r+fe

n—2

whenever u is harmonic and positive in B,.(0). This is an explicit form of Harnack’s
inequality.

Proof. Using Poisson’s formula for the ball, B,(0), we have

ulw) = =1 [ Masw) yeono

na(n)r o [y —
Since x € B,(0), then we know that

ly —a| <|r—a| <7+ x|

Thus,
() = =12 9(y) r— |zl Caly)
(@) = ator /aBT(O) - W = ey S TS
Il I .
~ na(n)r (r + |z|)n? /8&(0) (y)dS(y)
Il c N Y
TR Ty "5
- rnizr_—mu ean Value
N (r + |z])»1 (0) (M Value)

Next, since y € 9B,.(0)
r=lyl <ly— x|+ |z

then |y — x| > r — |z|. Thus,

RS el 1 9(v) r+af u(y)
. na(n)r /8&(0) ly — x!”ds(w = na(njr o8.(0) (7 = Ix!)”’lds(w

T+ | 1 .
T T g 50

n—2 T+ ‘l” f
=t u(y)dS(y
= 2 Ty ) “W)

o Tz
=" ————u(0) (Mean Value)
= Jel)

]
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Evans 2.5.8

Prove Poisson’s formula for the ball. Assume g € C'(0B,(0)) and define u by

o —zf? 9(y) .
a) = it /8 o lEAS) e B

Then,
(i) ue C=(B(0)).
(ii)) Au=0in B,(0).

(iii) a:h—g:lo u(z) = g(xg) for each xy € 9B,(0).
z€B;-(0)

Hint: Since u = 1 solves

Au=0 1in B,(0)
u=g¢g ondB,(0)
for ¢ = 1, the theory automatically implies

r?— |z 1

na(n)r [z —y|"

/ K(z,y)dS(y) =1 where K(z,y) =
8B.(0)

for each z € B,.(0).

Vector Calculus Identities: Let ¢,¢ : R® — R and F': R* — R"”

V- (@F) =o(V-F)+ (Vo) - F
A(¢Y) = ¢AY +2(V9) - (Vi) + pA¢

Note that we develop Poisson’s formula for u(x) as a solution to Laplace’s equation under
the assumption that a smooth solution exists. The theorem then shows that, indeed, u(x)
is smooth and it is a solution to Laplace’s equation.

Proof. Let u :=r? — |z|* and v := |z — y| ™ so that

na(n)rK(z,y) = uwv
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Calculating, we have Vu = —2z, Au = —2n and

Vv =V]z—y|l™
= —nlz —y[7"TV . V]z —y|
:—n|:c | (n+1) u
|z —y|
r—y
Mz =y
Av =V -(Vv)

(n n -y
— e =y 0 — (04 2] — g T

Ty Y
_ —(n+2) |Q§' B y|2
—n? n? +2n
= +
’x_y’nJrQ ‘x_y‘nJrZ
B 2n
- ’l’ — y’n+2

Then using the product rule for the Laplacian and noting that |y| = r,

2n r—y

Al = 0 e 2y (220 e i)

|z — y[" P2 A(uv) = 2nly* — 2n|z* + 4njz|* — dnz -y — 2nl|z — y|?

=2n (ly* + |2|* = 2z -y — |2[* = Jy|* + 22 - y)
=0

Thus, AK(z,y) = 0, so K is harmonic. Moreover, since K is continuous for x # y, then

Awsz(L&@K@wmwwﬂw)=L&@AK@wM@Mﬂw=

so u is harmonic and it is clear that u € C*(B,(0)), so u satisfies the mean value property
for all balls By(z) C B,(0), so by the smoothness theorem (Evans thm. 2.2.6), we have that
u € C™(B,.(0)).

Next, note that when g = 1, Then by the uniqueness of smooth solutions, u = 1 solves,

Au=0 1in B,(0)
u=g¢g ondB,(0)

and by Poisson’s formula, if 2 € B,.(0),
I=ulw)= [ Kygdse) = [ Kyas
9B (0) 0Br(0)
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Now let € > 0, zp € 0B,(0) and = € B,(0). Since g € C(9B,(0)), we can choose § > 0
such that .
9(y) —g(zo)l <5 when |y —zo| <4, y € 0B,(0)

u(z) = u(zo)| =

| Kawwdse) - [ Kp))lds)
9B, (0)

8B,.(0)

< / K (z.)lg(y) — 9(z0)|dS(y)
0By (0)

_ / K (2, 9)9(y) — 9(x0)|dS(y)
aBr(O)ﬂBg (IL‘Q)

+f K(z.)lg(0) - 9(s0)dS()
9Br(0)\Bs(xo)
=1+J

Estimating each integral, we have

€
r<s K, )ldS () <
0B (0)NBs(zo)

DO ™

and for J, we first see that if |z — 20| < £, then since y € 9B,(0)\Bs(zo), we know that
ly — x¢| > 0. Thus,

B 1
|y—xo|SIy—l’|+|x—xo|<|y—$|+§§|y—x|+§|y—xo|

Hence, —— < —2— <
ly—z| [y—=ol

SIS

, SO

J < 2||9||L°°(6BT(0))/ K(z,y)dS(y)
0B:(0)\Bs (o)

r? —|z|? 1
- 450
na(n)r OB, (0)\Bs (o) ly — |
2 2
Tol“ — |x 1
lzol” —Jal” ——dS(y) (Jzo| =7)
na(n)|zo| Jos,o)\Bswo) 1Y — |
(lzol = |z[)2[o] 1
na(n)|zo| 9B, (0)\Bs (x0) 1Y — T|"

— 1
<2l M/ ds
< Zllgllz= .0 no(n)  Jop, o)\Bs@o) 1Y — 2| )

= 2||glz>~@B. (0))

= 2||g9l|z=(aB.(0))

< 2|9 (08, (0)) dS(y)

To|l — |T 2"
< 22||9”Loo(8&(0))% /<9B o 5—nd5(y) (by above)

(lo] = [2])

= 2n+2 HgHLOO(@Br(O)) W”a(n)rn—l

22| gl L= 9, (0)) "™
= 5 (Jo] — [2])
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ed”

2n+3g|| Loo(aB, (o) T we have

so further assuming that |zo — z| <
€

J <z

2

Thus,

[u(e) —u(zo)| < T+J < 5+5 =

Evans 2.5.9

Let u be a solution of
Au=0 inR7}
u=g on ORY}

given by Poisson’s formula for the half-space. Assume g is bounded and g(z) = |z| for

x € ORY, |z| < 1. Show Du is not bounded near x = 0. (Hint: Estimate M)

Proof. Using Poisson’s formula for the half-space, we have

2, 9(y)
u(z) = /8 a5 (y)

na(n) Jory v —y|"

Let M > 0 be a bound on g. By the hint above and noting that u(0) = 0,

u(Ae,) —u(0) 2\ / 9(y)
- B AC VR /S
) Nna() Jos T — W)
2 2
_ / || _ds(y) + / 9(y) _4s(y)
na(n) OR™ N{Jy|<1} |Aen — v na(n) OR™\{|y|<1} |z — |
2

Y 2M 1
-2 s - 2 [ _dS(y)
na(n) OR? N{|y|<1} |Aen — ¥ na(n) OR™\{|y|<1} |z —yl

We see that the second integral above is bounded since n > 2. (The n = 1 case is trivial

since we integrate over a single point.) Now note that for y € OR", we must have y, = 0

and for y € {|y| < 1}, we must have y; < 1 for 1 <i <n. Thus,
2 / 19l 2 1yl
o dS(y) > —— 575 dS(y)
na(n) OR™ N{|y|<1} |Aen — y|™ na(n) OR™ N {ly|<1} (n + A2)n/2
: /
= lyldS(y
na(n)(n + X2)n/2 OR? ({|y|<1} | )

which goes to +00 as A — 0. Thus,
u(Aey,) — u(0)

lim ———~ =
A0 A oo
SO 8‘97“ diverges near 0. Thus, Du cannot be bounded near 0. [
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Evans 2.5.10

(Reflection Principle)

(a) Let Q1 denote the open half-ball,
t={zeR":|z| < 1,2, >0}

Assume u € C?(QF) is harmonic in QF, with v = 0 on dQ* N {z,, = 0}. Set

o(x) = {u(a:) if , >0

—u(xy, .. Tpq, —xy,) iz, <0

for z € Q = B1(0). Prove v € C%(Q) and thus, v is harmonic within €.

(b) Now assume only that u € C2(QF)NC(QF) is harmonic. Show that v is harmonic
only in . (Hint: Poisson’s formula for the ball.)

Proof.

(a) We see that v € C?(Q+) and v € C?(Q\QF) by definition since u € C?(QF). Thus, we

see that
im Opp,v(21,. .., %) = Opo,v(21, ..., Tn_1,0) (veC?
Tp—07F
= ax,xju(xla vy Tp—1, O)
= lim 0Oy, lu (xl, e T 1, —Ty)]
rn—0~
In the last equality above, we see that
Opia;[u(r, ..., —2p)] = — Hm Oppu(xy,...,—2n) = lm Oy v(T1, ..., 20)
Tn—0~ rn,—0~

for the case where either i or j equals n. If 4, j < n, then we know that u(x) = 0 for
red N{r,=0}={zeR": |z|<1,z,=0}

Thus, 0,,u(z) = 0 for 1 <7 < n, and hence 0,,,;u(x) = 0 for 1 < j < n. Thus, in this
case,

lim Oy v(21,...,0,) =0= lim Opu,v(x1,...,7,)
Tp—07F Tp—0~

Finally, for the case where i = j = n, we know that Au = 0 since u is harmonic and
since Oy, u(x) = 0 for 1 < i < n, then we must have that 0,, ., u(z) = 0 as well. Thus,
v € C%(Q) and v is harmonic.

(b) Using Poisson’s formula for the ball, we’ll define the function

1—|z|? v(y)
w(x) = { e faﬂ [2— y|n Sly) »eQ
v(z) z € 090
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Then we first make the observation that for x € QN {z, = 0},

wle) = LB [0 sy

na(n)r Jaq |z —y["

na(n)r Joongy.—oy 17 — y"

na(n)r Joongy,>oy 17— yl"

na(n)r Joongy.<oy 17— y|"

1 — |z|? e Un
0ON{yn>0}

na(n)r |z —y|"

1 — |z|? —uw(Y1y . Yn1, —Yn
na(n)r 90N {y, <0} |z — y|

Now, we note that (z, — yn)? = (2, + yn)? iff 2, = 0, so using the reflection y — 3
where § = (y1, ..., Yn_1, —Yn), then

2
0N {yn>0}

na(n)r |z —y|"

1—|z|? — U
na(n)r o0 {yn >0} |z — y|

=0

Thus, we have that w = v on Q@ N {z, = 0}, and w = v on Q. Moreover, since
v € C?(QT)NC(QT) is harmonic, then we may apply the maximum principle on w — v
on 7, to get that

maxw — v =maxw — v = ( and minw —v =minw —v =0
of o0+ of a0+

which, when combined, gives

max |w —v| =0 = w=vin QF
O+

Similarly, we can show that w = v in Q\QF. Therefore, v is harmonic on all of Q.

Suppose u is smooth and solves u; — Au = 0 in R™ x (0, 00).

(a) Show uy(x,t) = u(Ax, A\*t) also solves the heat equation for each \ € R.
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l (b) Use (a) to show v(z,t) = x- Du(z,t) + 2tu(z, t) solves the heat equation as well. J

Proof.

(a) This is almost trivial by direct computation,

[up(z, )] = Nug(a,t) Aluy(z,t)] = N2Au(z, t)

(b) We notice that
O[ux(z,t)] = x - Du(Axz, \°t) + 2Mtu, (Ax, A\*t)

and so
v(x,t) = [ur(z,t)]\ for A\ =1

and since u is smooth, we can commute differential operators to get
vy — Av = (0, — A)[v] = (0 — A)(O)[ux]

= 6A(8t — A)[U)\]
= 0,[0] =0

Evans 2.5.13

Assume n =1 and u(z,t) = v <%)

(a) Show

, 2z
Up = Uy iff v+ 51}’ =0

and show that the general solution of the ODE above is

z 52
v(z) = 01/ e Tds+ ¢y
0

(b) Differentiate u(z,t) = v (%) w.r.t. z and select the constant ¢ properly to

obtain the fundametal solution ® for n = 1. Explain why this procedure produces
the fundamental solution. (Hint: What is the initial condition for u?)

Proof.
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(a) By direct computation,

(3 e (3))

Equating the two and letting z = -, we have
/ _i) M 1
() (—57) ="(2)5
U// + fvl -0
2
and solving the above ODE, we have
v z
o2
2
z
In|v|=—=
n |[v'| 1 +c
22
v =cie T

(b) Differentiating w.r.t. x, we have

2
ug(x,t) = %

T
Vi

and we notice that ¢; = \/LH gives the fundamental solution for n = 1.

Evans 2.5.14

Write down an explicit formula for a solution of

u—Au+cu=f inR"x (0,00)
u=yg on R" x {t =0}

where ¢ € R.

Proof. Define v(z,t) := u(z,t)e”, then we see that

vy = ue + cue

Av = Aue®

SO
v — Av = (u; — Au + cu)e” = fe
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and
v(r,0) = u(z,0) =g

Thus, v solves the heat equation so we may use the formula for the inhomogeneous initial
value solution:

1 Je—yl? t 1 _le—y|?
U(:l:,t) = W/Rn e 4t g(y)dy —i—/() W /Rn e 4(tfs)f<y7 s)dyds

C

Thus, multiplying by e~ above gives the solution u(z,t) to the original equation. O

Given g : [0,00) — R, with g(0) = 0, derive the formula

2

e 1= g(s)ds

u(z,t) =

\/z_w /ot (t —13)3/2

for a solution of the initial /boundary-value problem,

U — Uy, =0 in Ry x (0, 00)
u=0 on R, x {t =0}
u=yg on {x =0} x [0,00)

(Hint: Let v(x,t) := u(x,t) — g(t) and extend v to {x < 0} by odd reflection.)

Proof. Defining v(z,t) := u(z,t) — g(t) for x > 0 and extending to z < 0 by odd reflection,
we have

o) = {u(az,t) —g(t) x>0

—u(—z,t)+g(t) =<0

—up(—z,t) +¢'(t) <0

o= fuien 20

(2.1) Uz (T, 1) r>0
Vpx\ Ly 1) =
—Uyy(—2,t) <0

Thus, we form the following initial/boundary-value problem

—g'(t) =0
UV — VUgg = ,
gt) =<0

v(z,0) =0 x#0
v(0,t) = t € (0,00)
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which takes the form of the heat equation. Thus using the formula for its solution, we have

v(ac,t)—/ot (/C[)(x—y,t—s) /(s)dy — /Hh@(x—y,t—s)g/(s)dy) ds
:iéwk/®@—yi—ﬁd@ﬂy—d@{é¢®—yi—$@0ds

- /Ot <zg'(s) / Oz —y,t — s)dy — g'(s)> ds (Jp @(y, t)dy = 1 for any t)
:[j@mg/‘@@—yJ—ska—Q@—ﬂw)

z— \2
4(t— s)d d
0+ [ A [ s
Since v(x,t) = u(x,t) — g(t), then
le—yl?
e 4t=s) S> dyds
/ \/_\/t —s /
22
- e Tdz ) d — -
/\/7?</\/tT o) Foey
Integrating by parts in s, we have
2 s=t
u(z,t) = [ / RG] dz]
\/E x \% t— s=0
/OO 1(t - 8)73/2674(571) - Z—Qef‘ﬂtziiﬁdz ds
.2 A(t — s)572

g(s)
VT

1
2(t — s)3/2
g9(s)
N3

o0 ¥ d __
[ s [

2
e =) dzds

=:7

t

J
:_/w@/m

0 ﬁ T

t

o,

0

+J

Integrating J by parts in z, we have

2 o0 1 L2
= / > ([ ] - [ g 7)o

_ ) AN B DSy B
) ﬁ 2t — s)32° ~ ) 2t — sy 7))

22
e H=1ds — 1T

g9(s)
_¢ERA (t — )32
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Thus,

2

u(z,t) = e =9 ds

z [t g(s)
_JE/o(t—S)S/2

Evans 2.5.16

Give a direct proof that if © is bounded and u € C?(Q7) N C(Qr) solves the heat
equation u; — Au = 0, then

max u = max u

Qr Tp
(Hint: Define u, := u — et for € > 0, and show u, cannot attain its maximum over Qr
at a point in Q)

Proof. Let u. := u — et, ¢ > 0. We first note that if u attains its maximum at a point
(.To,t0> € QT, then

uc (2%, o) = u(2®, tg) — ety > u(x,t) — ety for all (z,t) € Qr
Taking € — 0, we have
uc (2, to) > u(x,t) > u(z,t) — et = u(x,t) for all (x,t) € Qp

Thus showing u, attains its max in 2. Thus, by contrapositive, it suffices to show that u,
cannot attain its max in Qp.

Indeed if u. attains its max at (z%,t9) = (22,...,2% ty) € Qr, then we first observe that
[ty — Aue =uy —e — Au= —€e <0
Now define 7; : R™! — R as the j-th coordinate map, i.e.
T (T1, ., Xy Tpg1) = T

Then for each 1 < j < n + 1, define the map f; : 7,;(2r) — R by

f(2) = ue(x?,...,x?_l,z,xgﬂ,...,x%,to) 1<j<n
! u(xY, ... 20 2) j=n+1

By definition, we have that f;(z) attains its max at z for 1 < j <n and at to for j =n+1,
hence f7(2) < 0 and fj(z) = 0 at such points. Next, we observe that

d
0= fl1(to) = d—ue(:p?, oY 2) = [ue(z,t)];
z z=to (z,t)=(z%,t0)
0 d? 0 0 0 0
i .
0> fi(x;) = @ue(xl,...,xj_l,z,xj+1,...,xn,t0) = [uc(z,t)]e;a, ) (1<j<n)
(Irt):(z ’tO)
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Thus,

n n

0< froy(t) = Y1) = [ude =Y [tte]ae, = [els — Auc < 0
j=1 j=1
a contradiction. Thus, u. does not attain its maximum in Q7. O

(Equipartition of energy) Let u solve the initial-value problem for the wave equation
in one dimension:

U — Upy = 0 in R x (0, 00)
u=g, uy=h onRx {t=0}

Suppose g, h have compact support. The kinetic energy

o0

k(t) = 5/ ul(x,t)dx

o0

and the potential energy is

Prove

(a) k(t) + p(t) is constant in time t.

(b) k(t) = p(t) for all large times t.

Proof.

(a) Observe that

g

k(t) +p(t) = % N u; + uidz
i[kz(t) +p(t)] = 1/OO 2upugy + 2uyugde
dt 2
_ [ Uglhyy — UggUpdx (int. by parts)
= U_Oo (by the PDE)

(b) Next, we first recall d’Alembert’s formula,

) = 3 @lo+0)—glo—0)+3 [ hlydy

—t

N —
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wal, 1) = 5(g@ + 1) = o/ (o~ 1) + (bl +1) — h(z ~ 1))
wlat) = (o (w+ 1) + (2~ 1) + 5 (A + 1) + bz — 1)

Thus,

k(t) —p(t) = = /00 ul — ulde

—00

_ %/m (g — 02) (g + 10p)
—5 | a0+ he = )G+ 0 + b+ )ds

Since g, h are compactly supported, then we also have that ¢’ is compactly supported,
so choose M > 0 such that

supp(g’), supp(h) € [-M, M]
Then for ¢ > M, we’ll consider the following cases:

o If z >0, then
Jx+t)y=h(zr+t)=0 (since x +t > M)

so that k(t) —p(t) =0

o If x <0, then
r—t<x—M<—-M

so ¢'(x —t) = h(x —t) =0, so that k(t) — p(t) = 0.

Thus, for every x € R, k(t) — p(t) = 0.
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4 Part C

Prove that the Holder space C*7(Q) is a Banach space for any nonnegative integer k
and 0 <~y < 1.

Proof. Let o be a multi-index with |a| = k. We'll first show that [-]CM(@) is a seminorm.

1. Let A € R and u € C*7(Q). Then

[)‘U]Ck,v(ﬁ) = sup { | D*Au(z) = DMy (y)}

z,yeQ |{L‘ - y|
T#y
D~ — D“
— s {12 = Dt}
z,y€Q ‘.’B - y‘
7Y
= ’)\Hu]ckw(ﬁ)

2. Let u,v € Ck(Q).

[u + U]Ckﬂ(ﬁ) = Ssu

b {I(er)(x) — (u +v)(y)|}
Q

T,ye |ZL’ + y|
T#y
< s {1e) =0+ 1) =1t )
z,yeQ ‘l’ - y‘
7Y
< o (LA, (1))
z,y€Q |.T - y| z,y€Q ‘l’ - /y‘
TH#Y T#Y
= [Ucrr@ + ek @)
Next, defining
||U||Ckw(§) = ||U||Ck(ﬁ) + [U]Ckw(ﬁ)
we will show that [[u|cx. ) is a norm.
1. Since || - |lcx) is a norm and []ors (g 18 & seminorm, then we know [[Aul|cr. @ =

|/\| . ||U||Ck7'y(§) and ||U+U||Ck,»y(ﬁ) < HUHC’WV(Q) + ||U||Ckﬁ(ﬁ)'

2. It is clear that [|0[| ok = 0, so suppose now that ||ul|cw. ) = 0. Thus,

Z 1D%ul| ¢y + Z [D%u]con@) =0

la|<k |a|=k

Particularly, ||lul[og) = 0 implies that u = 0.
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Hence, || - ||cro(q) is @ norm. Now let € > 0 and (un)52; C C*7(Q) be a Cauchy sequence.
Then there exists N' € N such that if n,m > N then [[u, — || crn @) < € Thus, we see that

||Un||ckw(§) < fJun — UNHC'M(Q) + ||UN||CM(§) <€+ ||UN||ck»v(ﬁ) <0
since € is compact. Hence, u, is bounded, i.e.

[unllcra@y < max{[luillora @), - - lunllora @)}

Thus, there exists a convergent subsequence (u,, )72 ;. Let limy_,o up, = u. Next, there exists
N1, Na € N such that [|un, — up, || cen@) < €/2 for n,ny > Ny and [Jun, — ullorn @) < €/2 if
ng > Ny. Choosing the larger of the two, we have

[[tn — U||okw(§) < flun — UnkHckw(ﬁ) + [Jun, — UHCM(Q) <€

for all n,n; > max{N;, Ny}. Thus, u, — u. To show that v € C*7(Q), we recall that
u, € C*7(Q), so there exists C' > 0 such that

‘Daun(‘x) - Da“n(Q)’ < C’l’ - y”y
Thus, if we choose n sufficiently large so that [|u — u, || cxn @) < €/2, we have

|D%u(z) — D%u(y)| < [D*u(x) — Dy ()] + [D%un(z) — D%un(y)| + [Dun(y) — D u(y)]
< 2llu = upllgra@ + 1D un(z) — D%un(y))
<e+Clz—y|”
so we have that
|D%(x) — D*u(y)| < Clz —y|" < (C+ 1)z —y|
Hence, u € C*7(Q). O

Evans 5.2 Example 2
I

Consider the function

0, 1<xr<?2

f($):{1, 0<z<l1

Show that f(x) does not have a weak derivative.
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Solution: Suppose by contradiction that f has a weak derivative g, i.e. f’ = g in the weak
sense. Then for all test functions, h € C'2°([0,2]), we have that

/:fh’z—/ozgh (9=1)
| 2

/0 h' = —/0 gh (Definition of f)
h(1) — h(0) = — /02 ah (FTC)

2
h(1) =~ [ g (h € C.([0.2))
0
Now, consider the sequence (h,,)>*_, C C([0,2]) where
b () = (22 — 2%)™

Then, we know that h,,(1) = 1 for all m and for z € [0,2]\{1}, we see that 2x — 22 € (0,1),
50 hy(x) — 0 as m — oo. Thus,

hn(l) =1= _/o g(z)(2z — 2*)"dx

Hence, taking m — oo, we see that

2
1= lim —/ g(x)(2z — 2*)™dx = 0
0

m—o0

a contradiction. Thus, f does not have a weak derivative.

Product Rule for Weak Derivatives

If f € L () has a weak partial derivative f,, € Li () and ¢ € C*°(Q), then ¢ f is
weakly differentiable with respect to x; and

Proof. Let ¢ € C°(£2). Then, we know that (1¢) € C°(Q), so we may use ¥¢ as the test
function for the weak differentiability of f.

- [ fatw)in = [ fwo)uds
Q Q
= / f (W, + oy, )dx (classical product rule)
Q
= [ ootz + [ (£0)o.da
Q Q
/ (i) budc = — / (oo + furth) bl
Q Q
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Assume 0 < 8 < v < 1. Prove the interpolation inequality

1—y =8
lullconey < llull b Il io )

@

Proof. We first recall that

[ullconiey = llullcw) + [u]corq)
and we'll let p := }Z—E and g := % and we see that p+ g = 1. Now, we see that
[ullcor @) = HUH’(’;&) + [u]con(a)
u(z) —u(y) P+
= [|ull? ul|L, oy + sup (’
Wl + o (MG
zy

— ull ey + sup (P HOE R Z) s

z,yeQ ]a:—y]q(|x—y|5 g
zAy

< ||U||%(Q)Hu||(é(g) + [U]go,ﬁ(g) [U]go,l(g)
Now let a := |lullc(q), b = [u]cosq), and ¢ := [u]co1(q). Then

|ullcomo) < aPa? + bPc?

alal bPcl
= (a+b)? ((a AT + ar b)p) (force (a + b)P)
1=q44 bl—aee
= (a+b)? ((aa+ b;ﬁq + = b)c1q) (convert to g exponent)

= (a + by ( 7 (a(a; b))q + - i ; (C<a; b))q) (collect terms with ¢)

< (a+b)P(a+ c) (concavity of 27, g € (0, 1))

= HUHCO H(Q)HUH 1(Q)

Assume n =1 and u € W'?(0, 1) for some 1 < p < .

(a) Show that w is equal a.e. to an absolutely continuous function and ' (which
exists a.e.) belongs to L?(0,1).
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(b) Prove that if 1 < p < oo, then

jufr) = u(y)| < o~y (/01 Iu’lpdt> ”

for a.e. z,y € [0,1].

Proof.

(a) Since u’ exists a.e. and v’ € L?(0, 1), then by Holder’s inequality, v’ € L'(0, 1), so let
v(z) == [y u'(y)dy for x € (0,1). Then by the fundamental theorem of calculus for
Lebesgue integrals, we know that v is absolutely continuous on (0,1). Now consider a
test function ¢ € C2°(0,1) and observe that

/01@ —u)dldy = /0 1 ( /0 y u’(w)dw) ¢/ (y)dy — /0 uly)d ()dy

= —/0 U’(y)¢(y)dy+/0 W' (y)o(y)dy
—0

Since this holds for all ¢ € C2°(0,1), then v = u a.e.

(b) By (a), since u is absolutely continuous a.e., we may apply FTC, to get

/: u’(t)dt’ < /: o (t)]dt

< ull L () (assume x < y)

Ju(z) —uly)| =

_1
<l =y 71|l ooy

_1
<z —y[" #|v | ooy

Assume that 2 is bounded open subset of R"™ and there exists a smooth vector field
a : Q — R™ such that o - v > 1 along 02, where v denotes the usual outward unit
normal. Assume 1 < p < oo.

Apply the Gauss-Green theorem to [, |u[Par - vdS, to derive a new proof of the trace

inequality

/ |ulPdS < C/ | Dul? + |u|Pdy
20 0
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l for all u € C(Q).

Proof. Since u € C(Q), applying the Gauss-Green theorem, we have
/ |u\pdS§/ |ulPar - vdS (a-v>1)
o0 o0
< / V- (Julfa)dy (Gauss-Green)
Q
= [l (¥ @)+ T(ul) - ady
Q

= /Q |u|P(V - a) + pluP~! sgn(u)(Du - o)dy

< C’/ [ul? + plulP~| Duldy (a smooth on € bounded)
Q
p~1\ooT | Dylp
<C | |uf+p ((]u\ 5 ) -+ Dyl ) dy (Young’s inequality)
Q 1 p

= [l + o= Dlul + | Dupdy
Q

<C [ fup+1Dupdy
Q

Evans 5.10.8

Let Q be bounded, with a C* boundary. Show that a typical function v € LP(Q)
(1 < p < 00) does not have a trace on 9€2. More precisely, prove there does not exist
a bounded linear operator

T: LP(Q2) — LP(00)

such that Tu = u|aQ whenever u € C(Q) N LP(Q)

Proof. Suppose there exists such a T'. Then consider the sequence

un(x) _ e—n~dist(m,aﬂ)7 re

Then it is clear that u,(z) € (0,1] for all n € N and z € Q. Thus, u, € L*(Q). For z € 99,
up(x) =1 for all n, and if € , then u,(z) — 0 pointwise as n — oo, so by the dominated
convergence theorem, we have that

||Un||%2(9) —0
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By definition, since T" is bounded, there must exist some C' > 0 such that
| Tunl[2200) < CllunllL2()
but since u,, = 1 on 02, then Tu, = 1, so for sufficiently large n we have
1lz2(00) = [[Tunllr290) < Cllunlli2@) < 11lL200)

a contradiction, so no such 7" may exist. O]

Evans 5.10.9

Integrate by parts to prove the interpolation inequality:

| Dul| 2 < Ol D>l )y

L2 L2

for all w € C2°(2). Assume (2 is bounded, 0f2 is smooth, and prove the same inequality
for u € H*(Q2) N H} ().

Proof. For u € C(Q),

|DullZ, = /Q | Dul2dz

= / u- Du-ndS(z) — / uAudx (int. by parts)
o9 0

=0- / uAudx

Q

< / ful| Aulda (u € C.())
0

< / |u|| D?u|dz: (Au = tr(D?u))
0

< ||u|]2/22|]D2u||1L/22 (Holder’s inequality)

Now assume u is only in H*(Q) N H}(Q). Then since W™? C W™P for n > m, then we
know that u = 0 on 02 in the trace sense (Trace-zero theorem). Thus, the same calculation
as above holds with the only changes being Du in the weak sense and the integral over the
boundary is zero because of trace-zero. O

Evans 5.10.11

Suppose Q is connected and u € WP(Q) satisfies

Du=0 a.e. in €2

Prove w is constant a.e. in ).
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Proof. Let 7. be the standard mollifier and define
u® 1= u k0, in Q.

Then since
D[ue]:D[u’*ne]:Du*ne:O*T/EZO anE

Since u€ is smooth, then v must be constant a.e. in {2.. Moreover since u¢ — v a.e., then u
must also be constant a.e. in €).. Thus, taking ¢ — 0 gives u constant a.e. in €. O

Verify that if n > 1, the unbounded function u = loglog (1 + ﬁ) belongs to W1 (Q),
for Q = By(0).

Proof. We first calculate

1 1 -1
Uy, = il
Yo In(L 4+ 1/|z|) 14+ 1/ |z| |=|? |z
o In(1+1/]2)) o] + 1 |22
1 -1 1
|Du| =

In(1+ 1/]2|) [z] + 1 |=]
We'll first show that Du € L"(B1(0)). Indeed,

1 1 1]"
D n = — | a
Iulisoon = [ [<1n<1+|>><\xr+1) |w|] ’
S x)dr olar coordinates
/[)Bo,«ln +1/r><r+> ) P )

/

(na(n)r”_l)dr

+1/r) (r + 1)

"1
/ 1—1-1/7’ (r—kll)”%dr
o) [

—d 1 <1
1—1—1/7" " ( <1

— naln 1 1 N uw=1In(1+1/r)
- ”/m@) TECES VO {drz—ramdu

>~ 1 1
= na(n)/ — (1 + ) du
In(2) (e e —1

<1
< na(n)/ —du
1

n(2) U

< 00 (since n > 1)
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Thus, Du € L"(€2). Next, we have that

1
||U||Ln 01)) = / ln (hl <]. + —
B(0,1) |z]
1
= na(n)/ rnl
0

N—

)|

dr (polar coordinates)

< 00 (Integration by parts n times)

Thus, u € L"(Q2) as well. Finally, we want to confirm that Du is indeed the weak derivative
of u, but we know that u is pointwise differentiable in the classical sense away from z = 0,
so for ¢ € C°(£2), observe that

/ ud'do = —/ Du¢dx +/ updS(x) +/ updS(x)
Q\B.(0) O\ B.(0) 9B (0) o0

_ / Dugdz + / updS () (since & € C(02))
Q\B(0)

8B.(0)

Taking the last integral, we see that

/836(0) ugdS(z) = /635( o <1n (1 + |1|>) $(x)dS ()

< H¢||L°°(aBE(O))/ In (1 + —) dS(z)
9B (0) |z
1
= |6l o= (@5, (0))nx(n) In (1 + Z) et

and since n > 1 and we know that

1
lim €ln (1 + —) — 0 (by L’hopital’s)
€

e—0t
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then we may take ¢ — 0" to find

/Q udde = — /Q Duédz

Evans 5.10.15

Fix a > 0 and let 2 = B;(0). Show that there exists a constant C',; depending only on

n and «, such that
/ w?dr < C’/ | Dul|?*dx
Q U

|[{x € Q:u(z) =0}| >« u € HY(Q)

provided

Proof. Using Poincare’s inequality, we have
c/ \Duldz > /(u— (u)a)?dz
Q Q
= / u? — 2u(u)g + (v)jdr
Q

u? — u(u)odr — (u)Q/Qudx + (u)a|9

|2
19 Jo

u? — u(u)odr — (u) udz + (u)g|9|

u? = u(u)odz — [Qf(u)g + (u)|Q|

u? — u(u)odx

S~ — S — 5

Next, we have that

1 S| .
[ twrnds = & ([ e} < I e 1l ety (Holder' inea)

Ql — o
< %HUH;({erzu(m)#O}) (measure of support of )

Q —
= | ||Q| a HuH%g(Q) (since u = 0 outside of its support)

Thus, combining both results,

Q_
¢ [1pupar> [ e -l
. . o

12| — 0‘) 2
=|1- w72
( 1| 1A®)

and since a < [€2|, we may divide it over and we are done. O
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(Chain rule) Assume F : R — R is C', with F” bounded. Suppose 2 is bounded and
u € WP(Q) for some 1 < p < co. Show

v = F(u) € W"(Q) and v, = F'(u)uy, for i=1,...,n

Proof. We'll first show that v € LP(Q). Let (uy) C C*(£2) be a smooth sequence approxi-
mating u. Then

[vllzo) = 1E(W)lle) < [[F(u) = F(um)l o) + [1F (wm)l| @)

— ([ |F(u) = Fun)l " + 1 ()l o @)
(/, )

1/p
< (/ CPlu — um\p) + || (wm) || Lr @) (F Lipschitz)
Q

= Cllu = umllzri@) + [1F (um)l r ()
< o0

with the last inequality holding since u,, — w in L? and F' € C*(R), with © bounded.

Next, we’ll show that v,, = F'(u)u,,. Using smooth approximation (as shown above in
the Lipschitz argument), we know that

F(uy) = F(u)=v in LP(Q)
Next, we have that

[ F () [t o, — F (1)t

1o(9) = 1F () [Wm]e; = F(tm) e, + F (wn)ug, — F'(w)uy,
< () ([t — )| 2e 4 [[(F () — F'(w))tig, || o
<N oo () N[ty — s |0 + [[(F () — F' () ),
—0

Lr(Q)

Lpr

where the first integral goes to 0 by WP convergence and the second goes to 0 by the
dominated convergence theorem since F” € C(R). Thus, F(u,,) — F(u) and F'(um,) [tm]., —
F'(u)ug, in LP(€2) so by the uniqueness of the weak derivative, we must have that

[F(u)]e; = F'(u)u, for a.e. x € Q

Last, Dv = F'(u)Du € LP(Q2) since F' € C(u(R)) and Du € LP(Q2). O
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Evans 6.6.2
Let

n
— tj
Lu = Z (a um)g:] +cu
ij=1
Prove that there exists a constant p > 0 such that the corresponding bilinear form

B[, -] satisfies the hypothesis of the Lax-Milgram theorem, provided ¢(x) > —pu for all
x € S

Proof. We will first prove that there exists a > 0 such that

| Blu, v]| < aflull gz llvll @

for u,v € H}(Q). Indeed,

| Bu,v]| = / > (aug,), v+ cuw dr
Q J

ij=1
n
= / Z 0 Uy, Vg, + cuv da (int. by parts)
Q45=1
< sup ||aij]|oo/ |Du||Dv|dx—|—||cHoo/ |ul|v|dx (@, ¢ bounded)
1<i,j<n Q Q
< a([|[DuDv||pr + |Juv|| 1) (take o max)
< a(||Du|2||Dv||zz + ||w]|z2]|v]|z2) (Holder’s ineq.)
< allull g llvll (since [|ul[2, | Dull L2 < [Julmy)

Next, we’ll show that
5““”?{5(9) < Blu, u]

for a certain p > 0. By uniform ellipticity, there exists 6 > 0 such that

9/ |Du|2dx§/ Zaijuxiumj
Q Q;

1,7=1
= Blu,u] — / cutdx (int. by parts on Blu,u])
0
< Blu,al + s [ uids (e(x) > —u)
Q
< Blu,u] + Au/ | Du|?dx (Estimate on W (Q))
0

0 — Ap) /Q \Duldz < Blu, ]
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Choosing 0 < p < % gives us  — Ay > 0 and using the estimate on WF(Q) again gives us
that

6 A o A
Bllullz < QA'M/UQdI—i— . ”/ DulPdz < (G—Au)/ \Dul?dz < Blu, ]
Q Q Q

0—Au 60—Ap
2A 7 2 : o

where 8 = min{

Evans 6.6.3

A function v € HZ(Q) is a weak solution of this boundary-value problem for the
biharmonic equation

{Azu:f in 2

u:%:() on 0f)

/AuAvdx:/fvdx
Q Q

for all v € H2(Q). Given f € L*(Q), prove that there exists a unique weak solution
for the biharmonic equation.

provided

Proof. In order to invoke Lax-Milgram, we’ll prove that the differential operator
Lu = —A*u
satisfies its hypothesis.
1. Observe that

| Blu, v]| =

/ —A%uvdx

Q

/ AuAv
Q

(int. by parts and %% = 0 on 9Q)

< / |AuAv|dz

Q
< [[Au|| 20y || Av]| £2¢) (Holder’s ineq.)
< lull gVl 20 (since |ullze, [ Dullre, [Aullze < [lullm2)

2. Next, we first observe that
[ull72q) < CillDull 20
= C’/Q—uAudx (int. by parts)
< Ollull 2o [ Aullz2 () (Holder’s ineq.)

lull2@) < CllAull 3@
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followed by

IDull?2) < llull 2@ 1 Aull 20
< C|Dul| 20| A 22 (e (estimate on W)
[Dul|z2(0) < Cl|Aul|r2(0)

Thus, we have that
2 1 2 2 1 2
||AUHL2(Q) = EHDUHL2(Q) and ||AUHL2(Q) = EHUHH(Q)

Thus, we have

1 1 1
Blu] = [8ulls =3 (3 ) 1Al 2 Sl + g (1Duls + ) 2 Bl

by letting 8 = min{1/3,1/3C}.

Evans 6.6.4

Assume 2 is connected. A function u € H'(Q) is a weak solution of Neumann’s
problem

—Au=f inQ
%:0 on 0f?

/Du~Dvdx = / fudx
Q Q

for all v € H'(Q). Suppose f € L*(). Prove that Neumann’s problem has a weak

solution iff
/ fdxr =0
Q

Proof Outline. 1. Forward direction is trivial, just choose v = 1.

2. For the backward direction, we want to invoke Lax-Milgram, but constant functions
break the Blu,u] > fB|lul|3;: condition. Other condition is trivial.

3. With the fact that the average of constant functions are themselves, we restrict H! to
just those that have average equal to zero.

4. Prove this is a closed subset of H' under the same norm, thus making it a Hilbert
space as well

5. Use Poisson’s ineq. to split |[Dul|3, to find ||ul|3.
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6. Lax-Milgram gives a solution on the restricted Hilbert space. Extend it to {2 by using
the hypothesis [ fdxz = 0.
|
Proof. (=) In the forward direction, since we know that
/ Du - Dvdx = / fudx for all v € H'(Q)
then we simply choose v =1 € H'(Q) so that
/fd:l:—/Du Odx =0
(<) Our goal now is to invoke Lax-Milgram. We first define Lu = —Aw and using integra-
tion by parts, we see that
Blu,v] = / Luvdx = / —Auvdr = / Du - Dvdzx (since 2% = 0)
Q Q Q

Thus, for boundedness, we have
Bluvll < [ IDullDolde < Dl Dol < ey ol

Next, for the second condition of Lax-Milgram, we want to show that

Blu,u] > Bl|ulli o

for some 3 > 0. However, we notice that if v is a constant function u = A € R, then
Blu,u] = / |DA*dx = 0 but Al @) = [2A >0 for A#0
Q

This tells us that H(Q) is too large of a set for the second condition to hold everywhere.
Thus, we want to consider a restriction on H'({2). Keeping in mind that the average
of a constant function is itself, we define

H={ue H(Q): (u)q =0}

equipped with the H'-norm. To show that H is also a Hilbert space, we will use the
fact that closed subsets of Hilbert spaces are also Hilbert spaces. Indeed, let (u,) C H

converge to some u. Then
/udx /u—undx—l—/un
Q Q Q
U — Updx

< VIQllu = unl[ 20
< VIl = unll )

—0

(since (u,)q = 0)
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so we must have that

/uda::()
Q

or (u)g =0, so u € H. Thus, H is a Hilbert space. Then we may see that
Blu,u] = / | Dul|?*dx
Q
= HDU||2L2(Q)
1 2 1 2
= §‘Du’L2(Q) + §‘Du’L2(Q)

1
> §|DU|%2(Q) + Cllul| 20 (Poincare’s ineq.)
> Bllull mq)

Hence, by Lax-Milgram, we have the existence of a weak solution @ € H such that
Blu,v] = / fuodz for all v € H
Q

We now want to extend this to all of H'(2) so let v € H'(2). We know that v — (v)q €
H, so

Blu,v] = / Da - Dvdx
Q

= /QDﬂ -D(v — (v)q)dz + /Q Dt - D(v)odx
= | Du

),

- D(v— (v)g)dx

= f(v— (v)q)dx (since (v — (v)q) € H)
= /vadx - (U)Q/Qfdx
= /Q fuodz (by hypothesis)
= ( 7U)

[

Evans 6.6.10

Assume  is connected. Use (a) energy methods and (b) the maximum principle to
show that the only smooth solutions of the Neumann boundary-value problem

{—Au:O in O

%:O on 0f)
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are u = C, for some constant C' € R.

Proof.

(a) Using an energy method, observe that

0= / —uAudz :/ uDu - vdS(x) —/ —Du - Dudzx
Q o0 0

=0+ /Q | Dul?*dx (since 2% = 0)

= / | Du|?dx
Q

Thus, we have that Du = 0 a.e. in €. Since 2 is connected, we use Evans 5.10.11
to conclude that u is constant a.e. in {2 which by smoothness of u, implies that u is
constant in €.

(b) Suppose u is nonconstant and wlog, assume u > 0 somewhere in Q. Then by the
smoothness of u, we know that u attains its maximum at some point 2° € Q.

o If 2° € Q, then since Lu = —Au = 0 and Q is open, bounded and connected, then
the strong maximum principle implies that » must actually be constant.

o If 20 € 00, then since € is open and bounded, €2 satisfies the interior ball condition
at 2°. Next, we know that u is smooth up to the boundary, so by Hopf’s lemma,
we must have that

du

v
which contradicts that % = (0 on 0f).

(%) >0

Thus, in all cases, we must have that w is constant.
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