UCR Differential Equations

Edwin Lin | UCR (2021-22)

Assistance from:

Contents

T	ımp	ortant Theory:	0
	1	Gronwall Inequality (Brauer Thm. 1.4)	6
	2	First Existence and Uniqueness (Brauer Thm. 1.1)	6
	3	Linear System Existence and Uniqueness (Brauer Thm. 2.1)	6
	4	Abel's Formula (Brauer Thm. 2.3)	7
	5	Fundamental Matrix Criteria (Brauer Thm. 2.4)	7
	6	Variation of Constants Formula (Brauer Thm. 2.6)	7
	7	Fundamental Matrix for Constant Coefficient Linear System (Brauer Thm. 2.7)	8
	8	Eigenvalue bound on Fundamental Matrix (Brauer Thm. 2.10)	8
	9	Existence Theorem (Brauer Thm. 3.1)	8
	10	Poincare Diagram: Phase Portrait Classification	9
	11	Bifurcation Normal Forms (Strogatz Ch. 3)	9
	12	Fundamental Solution of Laplace's Equation (Evans Sec. 2.2.1)	10
	13	Mean Value Formula for Harmonic Functions (Evans. Thm 2.2.2)	10
	14	Strong Maximum Principle for Laplace's Equation (Evans Thm. 2.2.4)	11
	15	Uniqueness of Solution to Poisson's Equation (Evans Thm. 2.2.5)	11
	16	Smoothness of Harmonic Functions (Evans Thm. 2.2.6)	12
	17	Harnack's Inequality for Harmonic Functions (Evans Thm. 2.2.11)	12
	18	Poisson's Formula for the Ball (Evans Thm. 2.2.15)	13

19	Energy Method for Uniqueness of Poisson's (Evans Thm. 2.2.16)	13
20	Dirichlet's Principle (Evans Thm. 2.2.17)	14
21	Fundamental Solution of the Heat Equation (Evans Sec. 2.3.1)	15
22	Inhomogeneous Initial Value Heat Equation (Evans Thm. 2.3.2)	15
23	Mean Value Formula for the Heat Equation (Evans Thm. 2.3.3) $\dots \dots$	16
24	Strong Maximum Principle for Heat Equation (Evans Thm. 2.3.4)	16
25	Uniqueness of Solution to Heat Equation (Evans Thm. 2.3.5)	16
26	Smoothness of Solution to the Heat Equation (Evans Thm. 2.3.8)	17
27	Energy Method for Uniqueness of Heat Equation (Evans Thm. $2.3.10$)	17
28	d'Alembert's Formula (Evans Thm. 2.4.1)	19
29	Uniqueness for Wave Equation (Evans Thm. 2.4.5)	19
30	Wave Equation Finite Propagation Speed (Evans Thm. 2.4.6)	20
31	Holder Space (Evans Thm. 5.2.1)	20
32	Weak Derivative (Evans Sec. 5.2.1)	21
33	Sobolev Space (Evans Sec. 5.2.2)	21
34	Elementary Properties of Weak Derivatives (Evans Thm. 5.2.1)	22
35	Approximations of Sobolev functions (Evans Sec. 5.3)	22
36	Extensions (Evans Sec. 5.4)	23
37	Traces (Evans Sec. 5.5)	23
38	Sobolev Inequalities (Evans Sec. 5.6)	23
39	Sobolev Embeddings (Compactness) (Evans Sec. 5.7)	24
40	Poincare's Inequality (Evans Sec. 5.8.1)	25
41	Difference Quotients (Evans Sec. 5.8.2)	25
42	Sobolev Dual Space (Evans Sec. 5.9.1)	25
43	Elliptic Equations (Evans Sec. 6.1.1)	26

	44	Weak Solution (Evans Sec. 6.1.2)	27
	45	Lax Milgram Theorem (Evans Thm. 6.1.1)	27
	46	Regularity for Elliptic PDEs	28
	47	Maximum Principle for Elliptic PDEs	29
2	Par	t A	30
	48	Brauer 1.7.2	30
	49	Brauer 1.7.3	30
	50	Gronwall's Inequality Differential Form	31
	51	Brauer 1.7.4	32
	52	Brauer 2.1.2	32
	53	Brauer 2.3.3	33
	54	Corollary of Brauer Thm. 2.2	34
	55	Brauer 2.7.3	36
	56	Brauer 3.1.2	36
	57	Brauer 3.1.13	37
	58	Tonelli Iteration Scheme	40
	59	Strogatz 3.4.14	43
	60	Strogatz 3.4.10	45
3	Par	t B	47
	61	Evans 2.5.1	47
	62	Evans 2.5.2	47
	63	Mean Value Theorem for Laplace's equation	48
	64	Evans 2.5.3	50
	65	Evans 2.5.4	53

	66	Evans 2.5.5	54
	67	Evans 2.5.6	55
	68	Evans 2.5.7	57
	69	Evans 2.5.8	58
	70	Evans 2.5.9	61
	71	Evans 2.5.10	62
	72	Evans 2.5.12	63
	73	Evans 2.5.13	64
	74	Evans 2.5.14	65
	75	Evans 2.5.15	66
	76	Evans 2.5.16	68
	77	Evans 2.5.24	69
4	Par	et C	71
4	Par 78	Evans 5.10.1	71 71
4			
4	78	Evans 5.10.1	71
4	78 79	Evans 5.10.1	71 72
4	78 79 80	Evans 5.10.1	71 72 73
4	78 79 80 81	Evans 5.10.1Evans 5.2 Example 2Product Rule for Weak DerivativesEvans 5.10.2	71 72 73 74
4	78 79 80 81 82	Evans 5.10.1	71 72 73 74 74
4	78 79 80 81 82 83	Evans 5.10.1	71 72 73 74 74 75
4	78 79 80 81 82 83 84	Evans 5.10.1 Evans 5.2 Example 2 Product Rule for Weak Derivatives Evans 5.10.2 Evans 5.10.4 Evans 5.10.7 Evans 5.10.8 Evans 5.10.8	711 722 733 744 747 757
4	78 79 80 81 82 83 84 85	Evans 5.10.1 Evans 5.2 Example 2 Product Rule for Weak Derivatives Evans 5.10.2 Evans 5.10.4 Evans 5.10.7 Evans 5.10.8 Evans 5.10.9	71 72 73 74 74 75 76 77

89	Evans 5.10.17	81
90	Evans 6.6.2	82
91	Evans 6.6.3	83
92	Evans 6.6.4	84
93	Evans 6.6.10	86

1 Important Theory:

Gronwall Inequality (Brauer Thm. 1.4)

• **Theorem:** Let K be a nonnegative constant and let $f, g : [\alpha, \beta] \to \mathbb{R}$ be continuous nonnegative functions satisfying

$$f(t) \leq K + \int_{\alpha}^{t} f(s)g(s)ds$$

for $\alpha \leq t \leq \beta$. Then

$$f(t) \le K \exp\left\{\int_{a}^{t} g(s)ds\right\}$$

for all $t \in [\alpha, \beta]$.

Proof Outline.

- 1. Set $u(t) := K + \int_{\alpha}^{t} f(s)g(s)ds$
- 2. Take u'(t) and use the fact that $f(t) \leq u(t)$
- 3. Force the product rule by multiplying an integrating factor.
- 4. Integrate from α to t.
- 5. Move things around and note that $f(t) \leq u(t)$.

First Existence and Uniqueness (Brauer Thm. 1.1)

• **Theorem:** Let F be a vector function (with n components) defined in a region D of \mathbb{R}^{n+1} . Let the vectors F and $\partial F/\partial y_k$ be continuous in D for all $k=1,\ldots,n$. Then given a point $(t_0,\eta)\in D$, there exists a unique continuous solution ϕ of the system

$$y' = f(t, y) \qquad y(t_0) = \eta$$

The solution ϕ exists on an interval I containing t_0 for which the points $(t, \phi(t)) \in D$ when $t \in I$.

Linear System Existence and Uniqueness (Brauer Thm. 2.1)

- **Theorem:** If A(t), g(t) are continuous on some interval $a \le t \le b$, if $a \le t_0 \le b$, and if $|\eta| < \infty$, then the system y' = A(t)y + g(t) has a unique solution $\phi(t)$ satisfying $\phi(t_0) = \eta$ and ϕ exists on $a \le t \le b$.
- Note that the interval for which the solution ultimately exists on depends on

domain in which F(t,y) = A(t)y + g(t) is continuous. If D = dom(F) is given by

$$D = [a, b] \times (-\infty, \infty)$$

then the existence interval, which proliferates from t_0 continues so long as $|\phi(t)| < \infty$, i.e. for $t \in [a, b]$, the point $(t, \phi(t))$ remains in D.

Abel's Formula (Brauer Thm. 2.3)

• **Theorem:** If Φ is a solution matrix of

$$\mathbf{y}' = \mathbf{A}(t)\mathbf{y}$$

on I and if $t_0 \in I$, then

$$\det \Phi(t) = \det \Phi(t_0) \exp \left\{ \int_{t_0}^t \sum_{j=1}^n a_{jj}(s) ds \right\} \qquad t \in I$$

Fundamental Matrix Criteria (Brauer Thm. 2.4)

- **Definition:** A solution matrix on I for $\mathbf{y}' = \mathbf{A}(t)\mathbf{y}$ whose columns are linearly independent on I is called a *fundamental matrix*.
- **Theorem:** A solution matrix Φ of $\mathbf{y}' = \mathbf{A}(t)\mathbf{y}$ on an interval I is a fundamental matrix on I iff $\det \Phi(t) \neq 0$ for all $t \in I$.

Variation of Constants Formula (Brauer Thm. 2.6)

• Theorem: If Φ is a fundamental matrix of $\mathbf{y}' = \mathbf{A}(t)\mathbf{y}$ on an interval I, then

$$\Psi(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)g(s)ds$$

is the unique solution of

$$\mathbf{y}' = \mathbf{A}(t)\mathbf{y} + \mathbf{g}(t)$$

satisfying $\Phi(t_0) = \eta$.

• Using this, we have that any solution to $\mathbf{y}' = \mathbf{A}(t)\mathbf{y} + \mathbf{g}(t)$ can be written as

$$\mathbf{y}(t) = \Phi_h(t) + \Psi(t)$$

where Φ is as stated above and Φ_h is the solution to the homogeneous equation such that the initial conditions agree.

Fundamental Matrix for Constant Coefficient Linear System (Brauer Thm. 2.7)

• **Theorem:** The matrix

$$\Phi(t) = e^{At}$$

is the fundamental matrix of y' = Ay with $\Phi(0) = I_n$ on $-\infty < t < \infty$.

• If A is a constant coefficient matrix, then the solution to the system

$$\begin{cases} \mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g}(t) \\ \mathbf{y}(0) = \eta \end{cases}$$

is given by

$$\mathbf{y}(t) = e^{\mathbf{A}t} \eta + \int_0^t e^{\mathbf{A}(t-s)} g(s) ds$$

Eigenvalue bound on Fundamental Matrix (Brauer Thm. 2.10)

• **Theorem:** If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A, where λ_j has multiplicty n_j and $n_1 + \cdots + n_k = n$ and if p is any number larger than the real part of $\lambda_1, \ldots, \lambda_k$, i.e.

$$p > \max_{j=1,\dots,k} \Re(\lambda_j)$$

then there exists a constant K > 0 such that

$$|\exp\{t\mathbf{A}\}| \le K \exp\{pt\}$$
 $t \in [0, \infty)$

Existence Theorem (Brauer Thm. 3.1)

• The system we will situate ourselves in is

$$y' = f(t, y) \qquad y(t_0) = y_0$$

with $f, \partial f/\partial y$ continuous on the rectangle R given by

$$R = \{(t, y) : |t - t_0| \le a, |y - y_0| \le b\}$$

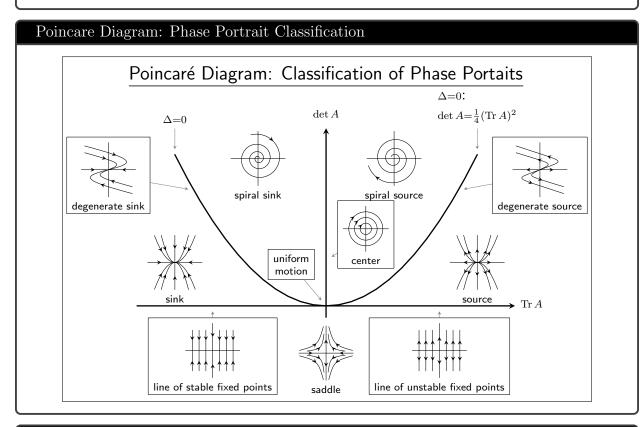
• Lemma: Define α to be the smaller of the positive numbers $a, b/\|f\|_{\infty}$. Then the successive approximations ϕ_n given by

$$\begin{cases} \phi_0(t) = y_0 \\ \phi_{n+1}(t) = y_0 + \int_{t_0}^t f(s, \phi_n(s)) ds & n = 1, 2, \dots \end{cases}$$

is well defined on the interval $I = \{t : |t - t_0| \le \alpha\}$ and on this interval

$$|\phi_n(t) - y_0| \le ||f||_{\infty} |t - t_0| \le b$$
 $n = 1, 2, ...$

• **Theorem:** Suppose $f, \partial f/\partial y$ are continuous on the closed rectangle R. Then the successive approximations ϕ_n , converge uniformly on the interval I to a solution ϕ of the above system.



Bifurcation Normal Forms (Strogatz Ch. 3)

Each type of bifurcation has a prototypical normal form.

1. (Saddle-node)

$$x' = r + x^2$$

2. (Transcritical)

$$x' = rx - x^2$$

3. (Supercritical pitchfork)

$$x' = rx - x^3$$

4. (Subcritical pitchfork)

$$x' = rx + x^3$$

Fundamental Solution of Laplace's Equation (Evans Sec. 2.2.1)

• **Definition**: The function

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x| & (n=2)\\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}} & (n \ge 3) \end{cases}$$

defined for $x \in \mathbb{R}^n$, $x \neq 0$, is the fundamental solution of Laplace's equation, $\Delta u = 0$.

• We also have the following estimates on the gradient and Hessian of Φ ,

$$|D\Phi(x)| \le \frac{C}{|x|^{n-1}}, \qquad |\Delta^2\Phi(x)| \le \frac{C}{|x|^n} \qquad (x \ne 0)$$

for some C > 0.

Mean Value Formula for Harmonic Functions (Evans. Thm 2.2.2)

• Theorem: If $u \in C^2(\Omega)$ is harmonic, then

$$u(x) = \oint_{\partial B_r(x)} u(y)dS(y) = \oint_{B_r(x)} u(y)dS(y)$$

for each ball $B_r(x) \subset \Omega$.

Proof Outline.

1. Define a function $\phi(r) = \int_{\partial B_r(x)} u(y) dS(y)$.

- 2. Use a change of coordinates so that we're integrating over $\partial\Omega$. This is $y \mapsto x + rz$ (dS(z)) and a factor of r^{n-1} appears as well so that we preserve the average.
- 3. Take $\phi'(r)$ so that a z pops out and convert back to y so that the z becomes $\frac{y-x}{r}$ which is exactly the unit normal vector.
- 4. Use Green's theorem so convert the integral to a useful formula, $\phi'(r) = \frac{r}{n} \int_{B_r(x)} \Delta u(y) dy$ and use harmonicity.

5. Thus, ϕ is constant so we can take $r \to 0$ to get u(x).

6. For $f_{B_r(x)}$, use polar coordinates to pull out $f_{\partial B_r(x)}$ and use the mean value formula over the surface.

• Theorem: If $u \in C^2(\Omega)$ satisfies

$$u(x) = \int_{\partial B_r(x)} u(y) dS(y)$$

for each ball $B_r(x) \subset \Omega$, then u is harmonic.

Proof Outline.

- 1. Suppose $\Delta u(x_0) > 0$.
- 2. Define $\phi(r) = \int_{\partial B_r(x_0)} u(y) dS(y)$, then we still get $\phi'(r) = \frac{r}{n} \int_{B_r(x_0)} \Delta u(y) dy$.
- 3. The hypothesis gives us that $\phi(r) = u(x_0)$ for every r, so ϕ is constant which leads to the contradiction.

Strong Maximum Principle for Laplace's Equation (Evans Thm. 2.2.4)

- **Theorem:** Suppose $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within Ω . Then,
 - 1. $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.
 - 2. If Ω is connected and there exists a point $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u,$$

then u is constant in Ω .

Proof Outline.

- 1. Proving (2) first, if $x_0 \in \Omega$ is maximal, then draw the ball $B_{\text{dist}(x_0,\partial\Omega)}(x_0)$ and use the mean value formula.
- 2. Thus, $B_{\text{dist}(x_0,\partial\Omega)}(x_0) \subset u^{-1}(\{u(x_0)\})$ which shows openness of $u^{-1}(\{u(x_0)\})$. Closedness of $u^{-1}(\{u(x_0)\})$ follows from $\{u(x_0)\}$ being a singleton, hence closed (preimage of closed is closed). Thus, it must be the entire set Ω .
- 3. Then use connectedness and that u is continuous to $\partial\Omega$.
- 4. To show (1), just use the same assumption and we'll get u constant on an open component of Ω . Then take u continuous to $\partial\Omega$ for the contradiction.

Uniqueness of Solution to Poisson's Equation (Evans Thm. 2.2.5)

• Theorem: Let $g \in C(\partial\Omega)$, $f \in C(\Omega)$. Then there exists at most one solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ of Poisson's equation

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Smoothness of Harmonic Functions (Evans Thm. 2.2.6)

• **Theorem:** If $u \in C(\Omega)$ satisfies the mean value property for each ball $B_r(x) \subseteq \Omega$, then

$$u \in C^{\infty}(\Omega)$$

Proof Outline.

- 1. Let η be the standard mollifier which we note is radial and define $\eta_{\epsilon}(x) = \frac{1}{\epsilon^n} \eta\left(\frac{x}{\epsilon}\right)$ which has $\operatorname{supp}(\eta_{\epsilon}) \subset B_{\epsilon}(0)$.
- 2. Set $u^{\epsilon} = \eta_{\epsilon} * u$ in $\Omega_{\epsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \epsilon\}$ and we know u^{ϵ} is smooth.
- 3. Calculate using the definition of η_{ϵ} , polar coordinates, and the mean value property to get that $u^{\epsilon}(x) = u(x)$ in Ω_{ϵ} for all ϵ .
- 4. Conclude that $u \in C^{\infty}(\Omega)$.

Harnack's Inequality for Harmonic Functions (Evans Thm. 2.2.11)

• **Theorem:** For each connected open set V with $V \subset\subset \Omega$, there exists a positive constant C, depending only on V, such that

$$\sup_{V} u \le C \inf_{V} u$$

for all nonnegative harmonic functions u in Ω .

Proof Outline.

- 1. Let $r := \frac{1}{4} \operatorname{dist}(V, \partial \Omega)$ and choose $x, y \in V$ with |x y| < r
- 2. Use mean value formula over $B_{2r}(x)$, u nonnegative, and $B_r(y) \subset B_{2r}(x)$ to calculate $u(x) \geq \frac{1}{2n}u(y)$.
- 3. Use V connected, \overline{V} compact to cover \overline{V} be a finite chain of overlapping balls of radius r/2.
- 4. Induct over the number of balls and repeat (2) to get $u(x) \ge \frac{1}{2^{n(N+1)}u(y)}$ for any $x, y \in V$.

Poisson's Formula for the Ball (Evans Thm. 2.2.15)

• Theorem: If $u \in C^2(\overline{\Omega})$ solves Poisson's equation,

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

for $f \in C(\Omega)$, $g \in C(\partial\Omega)$, then

$$u(x) = -\int_{\partial\Omega} g(y) \frac{\partial G}{\partial \nu}(x, y) dS(y) + \int_{\Omega} f(y) G(x, y) dy \qquad (x \in \Omega)$$

• **Definition:** Green's function for the unit ball is

$$G(x,y) = \Phi(y-x) - \Phi(|x|(y-\tilde{x}))$$
 $(x,y \in B_1(0), x \neq y)$

where $\tilde{x} = \frac{x}{|x|^2}$.

• Theorem: Assume $g \in C(\partial B_r(0))$ and define u by

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|x - y|^n} dS(y) + \underbrace{\int_{B_r(0)} f(y)G(x, y) dy}_{\text{Lin}}$$

then

- $-u \in C^{\infty}(B_r(0)).$
- $-\Delta u = 0$ in $B_r(0)$
- $-\lim_{\substack{x\to x_0\\x\in B_r(0)}}u(x)=g(x_0) \text{ for each point } x_0\in\partial B_r(0).$

Energy Method for Uniqueness of Poisson's (Evans Thm. 2.2.16)

• Theorem: There exists at most one solution $u \in C^2(\overline{\Omega})$ of

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Proof Outline.

- 1. Consider two solutions u_1, u_2 satisfying the above equation and take their difference $w = u_1 u_2$.
- 2. We then see $\Delta w = 0$ and w = 0 on $\partial \Omega$, so integrate $w \Delta w$ by parts to find |Dw| = 0

3. Hence w = 0 in Ω .

Dirichlet's Principle (Evans Thm. 2.2.17)

• Theorem: Assume $u \in C^2(\overline{\Omega})$ solves

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Then,

$$I[u] = \min_{w \in \mathcal{A}} I[w] \quad \text{where} \quad \begin{cases} I[w] := \int_{\Omega} \frac{1}{2} |Dw|^2 - w f dy \\ \mathcal{A} := \{ w \in C^2(\overline{\Omega}) : w = g \text{ on } \partial \Omega \} \end{cases}$$

Conversely, if $u \in A$, satisfies the above minimization problem, then u solves the Poisson equation above.

Proof Outline.

- 1. (Forward direction) First notice that $0 = \int_{\Omega} (-\Delta u f)(u w) dy$ since $-\Delta u f = 0$.
- 2. Distribute and integrate $-\Delta u(u-w)$ by parts. Moving things around gives $\int_{\Omega} |Du|^2 fudy = \int_{\Omega} Du \cdot Dw fw$.
- 3. Using the Cauchy Schwarz and Cauchy's inequality, we know $|Du \cdot Dw| \le |Du||Dw| \le \frac{1}{2}|Du|^2 + \frac{1}{2}|Dw|^2$
- 4. Use (2) on $\int_{\Omega} Du \cdot Dw fw$ to find I[w] and move things around to get $I[u] \leq I[w]$
- 5. (Backward direction) Consider a small perturbation $i(\epsilon) := I[u + \epsilon v]$ where $\epsilon \in \mathbb{R}$ and $v \in C_c^{\infty}(\Omega)$.
- 6. Note that i'(0) = 0 since $\epsilon = 0$ is minimal
- 7. Expand and distribute $i(\epsilon)$, take $\frac{d}{d\epsilon}$ of $i(\epsilon)$ and set $\epsilon = 0$.
- 8. Integrate by parts to find $0 = \int_{\Omega} (-\Delta u f) v dy$
- 9. Since this holds for every $v \in C_c^{\infty}(\Omega)$, then $-\Delta f = 0$.

Fundamental Solution of the Heat Equation (Evans Sec. 2.3.1)

• **Definition:** The function

$$\Phi(x,t) := \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}} & (x \in \mathbb{R}^n, t > 0) \\ 0 & (x \in \mathbb{R}^n, t < 0) \end{cases}$$

is called the fundamental solution of the heat equation, $u_t - \Delta u = 0$.

• **Lemma:** (Integral of fundamental solution). For each time t > 0,

$$\int_{\mathbb{R}^n} \Phi(x, t) dx = 1.$$

Note the choice of normalizing constant makes this possible.

Inhomogeneous Initial Value Heat Equation (Evans Thm. 2.3.2)

• Theorem: Let $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, and define u by

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f(y,s)dyds$$
$$= \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y)dy + \int_0^t \frac{1}{(4\pi (t-s))^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4(t-s)}} f(y,s)dyds$$

for $x \in \mathbb{R}^n$, t > 0, then

- 1. $u \in C_1^2(\mathbb{R}^n \times (0, \infty))$.
- 2. $u_t(x,t) \Delta u(x,t) = f(x,t)$ for $x \in \mathbb{R}^n, t > 0$.
- 3. $\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n,t>0}}u(x,t)=g(x_0) \text{ for each } x_0\in\mathbb{R}^n.$

Mean Value Formula for the Heat Equation (Evans Thm. 2.3.3)

• **Definition:** We define the parabolic cylinder

$$\Omega_T := \Omega \times (0, T]$$

and the parabolic boundary of Ω_T is

$$\Gamma_T := \overline{\Omega}_T - \Omega_T$$

Be careful to note that Ω_T contains the interior and the top face while Γ_T comprises the bottom face and the vertical sides.

• **Definition:** For fixed $x \in \mathbb{R}^n$, $t \in \mathbb{R}$ and r > 0, we define

$$E(x,t;r) := \left\{ (y,s) \in \mathbb{R}^{n+1} : s \le t, \ \Phi(x-y,t-s) \ge \frac{1}{r^n} \right\}$$

Note that the "center" (x,t) is located at the center of the top of the heat ball.

• Theorem: Let $u \in C_1^2(\Omega_T)$ solve the heat equation. then

$$u(x,t) = \frac{1}{4r^n} \iint_{E(x,t;r)} u(y,s) \frac{|x-y|^2}{(t-s)^2} dy ds$$

for each $E(x,t;r) \subset \Omega_T$.

Strong Maximum Principle for Heat Equation (Evans Thm. 2.3.4)

• Theorem: Assume $U \in C_1^2(\Omega_T) \cap C(\overline{\Omega}_T)$ solves the heat equation in Ω_T . Then

$$\max_{\overline{\Omega}_T} u = \max_{\Gamma_T} u$$

Furthermore, if Ω is connected and there exists a point $(x_0, t_0) \in \Omega_T$ such that

$$u(x_0, t_0) = \max_{\overline{\Omega}_T} u$$

then u is constant in $\overline{\Omega}_{t_0}$.

Uniqueness of Solution to Heat Equation (Evans Thm. 2.3.5)

• Theorem: Let $g \in C(\Gamma_T)$, $f \in C(\Omega_T)$. Then there exists at most one solution

 $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega}_T)$ of the initial/boundary-value problem

$$\begin{cases} u_t - \Delta u = f & \text{in } \Omega_T \\ u = g & \text{on } \Gamma_T \end{cases}$$

Smoothness of Solution to the Heat Equation (Evans Thm. 2.3.8)

• Theorem: Suppose $u \in C_1^2(\Omega_T)$ solves the heat equation in Ω_T . Then $u \in C^{\infty}(\Omega_T)$.

Energy Method for Uniqueness of Heat Equation (Evans Thm. 2.3.10)

• **Theorem:** (Forward uniqueness) There exists only one solution $u \in C_1^2(\overline{\Omega}_T)$ of the initial/boundary-value problem.

$$\begin{cases} u_t - \Delta u = f & \text{in } \Omega_T \\ u = g & \text{on } \Gamma_T \end{cases}$$

Proof. Let u_1, u_2 be solutions to the heat equation and define $w := u_1 - u_2$ so that w solves

$$\begin{cases} w_t - \Delta w = 0 & \text{in } \Omega_T \\ w = 0 & \text{on } \Gamma_T \end{cases}$$

Set

$$E(t) = \int_{\Omega_T} \frac{1}{2} w^2(x, t) dx \qquad 0 \le t \le T$$

Taking ∂_t , we have

$$E'(t) = \int_{\Omega_T} w(x, t)w_t(x, t)dx$$

$$= \int_{\Omega_T} w(x, t)\Delta w(x, t)dx \qquad \text{(by the PDE)}$$

$$= -\int_{\Omega_T} |Dw|^2 dx \qquad \text{(int. by parts)}$$

$$\leq 0$$

Therefore, $E(t) \leq E(0) = 0$ since w = 0 on Γ_T . Thus, $u_1 - u_2 = w = 0$ in Ω_T .

• Theorem: (Backwards uniqueness) Suppose $u_1, u_2 \in C^2(\overline{\Omega}_T)$ solve

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \Omega_T \\ u = g & \text{on } \partial\Omega \times [0, T] \end{cases}$$

If $u_1(x,T) = u_2(x,T)$ for $x \in \Omega$, then $u_1 = u_2$ in Ω_T .

Proof. Let u_1, u_2 be solutions to the heat equation and define $w := u_1 - u_2$ so that w solves the homogeneous heat equation with zero boundary condition on Γ_T . Set

$$E(t) = \int_{\Omega_T} \frac{1}{2} w^2(x, t) dx \qquad 0 \le t \le T$$

and take ∂_t as well as ∂_t^2 .

$$E'(t) = -\int_{\Omega_T} |Dw|^2 dx$$

$$E''(t) = -2 \int_{\Omega_T} Dw \cdot (Dw)_t dx$$

$$= 2 \int_{\Omega_T} \Delta w w_t dx \qquad \text{(int. by parts)}$$

$$= 2 \int_{\Omega_T} (\Delta w)^2 dx \qquad \text{(By the PDE)}$$

Now observe that

$$E'(t) = -\int_{\Omega_T} |Dw|^2 dx$$

$$= -\int_{\Omega_T} w \Delta w dx \qquad \text{(int. by parts)}$$

$$\leq ||w||_{L^2(\Omega_T)} ||\Delta w||_{L^2(\Omega_T)}$$

Thus,

$$[E'(t)]^2 \le \frac{1}{2} 2 \int_{\Omega_T} w^2 dx \int_{\Omega_T} (\Delta w)^2 dx = E(t)E''(t)$$

Now if $E \equiv 0$ for all $t \in [0, T]$, then we are done, so assume otherwise so that there exists an interval $[t_1, t_2] \subset [0, T]$ where E(t) > 0 for $t \in [t_1, t_2)$ and $E(t_2) = 0$. Such a t_2 exists since we can push t_2 to T and we know that w(x, T) = 0 by hypothesis. Now define

$$f(t) := \log(E(t)) \qquad t \in [t_1, t_2)$$

and we see that

$$f'(t) = \frac{E'(t)}{E(t)}$$

$$f''(t) = \frac{E(t)E''(t) - [E'(t)]^2}{[E(t)]^2}$$

$$= \frac{E''(t)}{E(t)} - \frac{[E'(t)]^2}{[E(t)]^2}$$

$$\geq 0 \qquad \text{(since } [E']^2 \leq EE'')$$

Thus, f is convex, so for $\lambda \in (0,1)$ and $t \in (t_1,t_2)$

$$f(\lambda t_1 + (1 - \lambda)t) \le \lambda f(t_1) + (1 - \lambda)f(t)$$

and exponentiating gives

$$0 \le E(\lambda t_1 + (1 - \lambda)t) \le E^{\lambda}(t_1)E^{1-\lambda}(t)$$

so letting $t \to t_2$, we have that

$$0 \le E(\lambda t_1 + (1 - \lambda)t_2) \le E^{\lambda}(t_1)E^{1-\lambda}(t_2) = 0$$
 for all $\lambda \in (0, 1)$

Thus, $E \equiv 0$ on $[t_1, t_2]$, a contradiction. Hence $E \equiv 0$ for $t \in [0, T]$, so w = 0 in Ω_T .

d'Alembert's Formula (Evans Thm. 2.4.1)

• **Theorem:** (Solution of wave equation, n=1) Assume $g \in C^2(\mathbb{R}), h \in C^1(\mathbb{R}),$ and define u by d'Alembert's formula,

$$u(x,t) = \frac{1}{2}[g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y)dy \qquad x \in \mathbb{R}, t \ge 0$$

then

- 1. $u \in C^2(\mathbb{R} \times [0, \infty))$
- 2. $u_{tt} u_{xx} = 0$ in $\mathbb{R} \times [0, \infty)$.
- $\lim_{\substack{(x,t)\to(x^0,0)\\t>0}} u(x,t) = g(x^0) \text{ and } \lim_{\substack{(x,t)\to(x^0,0)\\t>0}} u_t(x,t) = h(x^0) \text{ for each point } x^0 \in$ \mathbb{R} .

Uniqueness for Wave Equation (Evans Thm. 2.4.5)

• Theorem: Let $\Omega \subset \mathbb{R}^n$ be a bounded, open set with a smooth boundary $\partial \Omega$, and as usual, set $\Omega_T = \Omega \times (0,T]$, $\Gamma_T = \overline{\Omega}_T - \Omega_T$, where T > 0. Then there exists at most one solution $u \in C^2(\overline{\Omega}_T)$, solving

$$\begin{cases} u_{tt} - \Delta u = f & \text{in } \Omega_T \\ u = g & \text{on } \Gamma_T \\ u_t = h & \text{on } \Omega \times \{t = 0\} \end{cases}$$

1. Let $w = u_1 - u_2$ where u_1, u_2 are solutions

- 2. Define $E(t) := \frac{1}{2} \int_{\Omega} w_t^2(x,t) + |Dw(x,t)|^2 dx$ for $0 \le t \le T$.
- 3. Take E'(t) and use the PDE to get E'(t) = 0 for all $0 \le t \le T$.

Wave Equation Finite Propagation Speed (Evans Thm. 2.4.6)

• Theorem: If $u \equiv u_t \equiv 0$ on $B_{t_0}(x_0) \times \{t = 0\}$, then $u \equiv 0$ within the cone $K(x_0, t_0)$, where

$$K(x_0, t_0) := \{(x, t) := 0 \le t \le t_0, |x - x_0| \le t_0 - t\}$$

Proof. Define the energy function,

$$E(t) := \frac{1}{2} \int_{B_{t_0 - t}(x_0)} u_t^2(x, t) + |Du|^2(x, t) dx$$

Then,

$$E'(t) = \int_{B_{t_0 - t}(x_0)} u_t u_{tt} + Du \cdot Du_t dx - \frac{1}{2} \int_{\partial B_{t_0 - t}(x_0)} u_t^2 + |Du|^2 dS(x)$$
(polar coordinates (derivative))
$$= \int_{B_{t_0 - t}(x_0)} u_t u_{tt} - u_t \Delta u dx$$

$$+ \int_{\partial B_{t_0 - t}(x_0)} Du \cdot \eta u_t dS(x) - \frac{1}{2} \int_{\partial B_{t_0 - t}(x_0)} u_t^2 + |Du|^2 dS(x)$$

$$= 0 + \int_{\partial B_{t_0 - t}(x_0)} Du \cdot \eta u_t dS(x) - \frac{1}{2} \int_{\partial B_{t_0 - t}(x_0)} u_t^2 + |Du|^2 dS(x)$$
(by the PDE)
$$\leq \frac{1}{2} \int_{\partial B_{t_0 - t}(x_0)} |Du|^2 + u_t^2 dS(x) - \frac{1}{2} \int_{\partial B_{t_0 - t}(x_0)} u_t^2 + |Du|^2 dS(x)$$
(Young's ineq.)
$$= 0$$

Thus, $E'(t) \leq 0$. Since $u \equiv 0$ on $B_{t_0}(x_0) \times \{t = 0\}$ then Du = 0 on $B_{t_0}(x_0)$, so we must have that $E(t) \leq E(0) = 0$ for $0 \leq t \leq t_0$. Thus, $u(x,t) = u(x_0,t_0) = 0$ for all $(x,t) \in K(x_0,t_0)$.

Holder Space (Evans Thm. 5.2.1)

• If $u:\Omega\to\mathbb{R}$. Then we say u is Holder continuous with exponent γ if

$$|u(x) - u(y)| \le C|x - y|^{\gamma} \qquad (x, y \in \Omega), \gamma \in (0, 1], C \ge 0$$

Note if $\gamma > 1$, then u will be constant.

• **Definition:** If $u: \Omega \to \mathbb{R}$, $u \in C_b(\Omega)$, we write

$$\|u\|_{C(\overline{\Omega})}:=\sup_{x\in\Omega}|u(x)|$$

• **Definition:** The γ^{th} -Holder seminorm of $u: \Omega \to \mathbb{R}$ is

$$[u]_{C^{0,\gamma}(\overline{\Omega})} := \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\gamma}}$$

• **Definition:** So the γ^{th} -Holder norm of $u:\Omega\to\mathbb{R}$ is

$$||u||_{C^{0,\gamma}(\overline{\Omega})} := ||u||_{C(\overline{\Omega})} + [u]_{C^{0,\gamma}(\overline{\Omega})}$$

• **Definition:** The Holder space $C^{k,\gamma}(\overline{\Omega})$ consists of all functions $u \in C^k(\overline{\Omega})$ for which

$$||u||_{C^{k,\gamma}(\overline{\Omega})} := \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\overline{\Omega})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{\Omega})} < \infty \qquad (\alpha \text{ multiindex})$$

i.e. the space of functions that are up to k-times continuously differentiable and whose $k^{\rm th}$ derivatives are bounded and Holder continuous with exponent γ

• Theorem: Holder space, $C^{k,\gamma}(\overline{\Omega})$ is a Banach space.

Weak Derivative (Evans Sec. 5.2.1)

• **Definition:** Suppose $u, v \in L^1_{loc}(\Omega)$ and α is a multiindex. We say that v is the α^{th} -weak partial derivative of u, denoted

$$D^{\alpha}u = v$$

provided

$$\int_{\Omega} u D^{\alpha} \phi dy = (-1)^{|\alpha|} \int_{\Omega} v \phi dy \qquad \text{for all test functions } \phi \in C_c^{\infty}(\Omega)$$

• **Lemma:** If it exists, then the α^{th} -weak derivative of u is uniquely defined up to a set of measure zero.

Sobolev Space (Evans Sec. 5.2.2)

- **Definition:** The Sobolev space, denoted $W^{k,p}(\Omega)$, consists of all locally $L^1(\Omega)$ functions $u:\Omega\to\mathbb{R}$ such that for each multiindex α with $|\alpha|\leq k$, $D^{\alpha}u$ exists in the weak sense and belongs to $L^p(\Omega)$.
- If p = 2, we usually write

$$H^{k}(\Omega) = W^{k,2}(\Omega)$$
 $k = 0, 1, 2, ...$

and the letter H is used since $H^k(\Omega)$ is a Hilbert space. Also, note that $H^0(\Omega) = L^2(\Omega)$.

• **Definition:** If $u \in W^{k,p}(\Omega)$, we define the Sobolev norm by

$$||u||_{W^{k,p}(\Omega)} := \begin{cases} \left(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha}u|^p dx\right)^{1/p} & 1 \le p < \infty \\ \sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^{\infty}(\Omega)} & p = \infty \end{cases}$$

- **Definition:** We denote by $W_0^{k,p}(\Omega)$, the closure of $C_c^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$. (i.e. the limit points of $C_c^{\infty}(\Omega)$ using the Sobolev metric.)
- Theorem: For each $k = \in \mathbb{N}$ and $1 \le p \le \infty$, the Sobolev space $W^{k,p}(\Omega)$ is a Banach space.

Elementary Properties of Weak Derivatives (Evans Thm. 5.2.1)

- Theorem: Assume $u, v \in W^{k,p}(\Omega), |\alpha| \leq k$. Then,
 - (i) $D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$ and $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$ for all α, β with $|\alpha| + |\beta| \le k$.
 - (ii) For each $\lambda \in \mathbb{R}$, $\lambda u + v \in W^{k,p}(\Omega)$ and $D^{\alpha}(\lambda u + v) = \lambda D^{\alpha}u + D^{\alpha}v$. i.e. weak derivatives are linear.
 - (iii) If V is an open subset of Ω , then $u \in W^{k,p}(V)$.
 - (iv) If $\zeta \in C_c^{\infty}(\Omega)$, then $\zeta u \in W^{k,p}(\Omega)$ and

$$D^{\alpha}(\zeta u) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta} \zeta D^{\alpha - \beta} u \qquad \text{(Leibniz formula)}$$

where
$$\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha-\beta)!}$$
 where $\alpha! = \prod_{i=1}^{|\alpha|} \alpha_i!$

Approximations of Sobolev functions (Evans Sec. 5.3)

• Theorem: (Local Approximation) Assume $u \in W^{k,p}(\Omega)$ for some $1 \le p < \infty$, and set

$$u^{\epsilon} = \eta_{\epsilon} * u \quad \text{in } \Omega_{\epsilon}$$

Then,

- $-u^{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ for each $\epsilon > 0$
- $-u^{\epsilon} \to u \text{ a.e. in } \Omega_{\epsilon}.$
- $-u^{\epsilon} \to u \text{ in } W^{k,p}_{\text{loc}}(\Omega) \text{ as } \epsilon \to 0.$

• **Theorem:** (Global Approximation) Assume Ω is bounded, and suppose that $u \in W^{k,p}(\Omega)$ for some $1 \leq p < \infty$. Then there exists functions $u_m \in C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ such that

$$u_m \to u$$
 in $W^{k,p}(\Omega)$

If we further have that $\partial\Omega$ is C^1 , then we may take $u_m \in C^{\infty}(\overline{\Omega})$.

Extensions (Evans Sec. 5.4)

• Theorem: (Extension theorem) Assume Ω is bounded and $\partial\Omega$ is C^1 . Select a bounded open set V such that $\Omega \subset\subset V$. Then there exists a bounded linear operator

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$$

such that for each $u \in W^{1,p}(\Omega)$.

- -Eu = u a.e. in Ω
- Eu has support (i.e. is nonzero) within V
- $\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leq C\|u\|_{W^{1,p}(\Omega)}$ where C depends only on p, Ω, V

Traces (Evans Sec. 5.5)

• Theorem: Assume Ω is bounded and $\partial\Omega$ is C^1 . Then there exists a bounded linear operator

$$T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$$

such that

- $-Tu=u\big|_{\partial\Omega}$ if $u\in W^{1,p}(\Omega)\cap C(\overline{\Omega})$.
- $||Tu||_{L^p(\Omega)} \le C||u||_{W^{1,p}(\Omega)}.$
- Theorem: Assume Ω is bounded and $\partial\Omega$ is C^1 . Suppose further that $u \in W^{1,p}(\Omega)$. Then,

$$u \in W_0^{1,p}(\Omega)$$
 iff $Tu = 0$ on $\partial \Omega$

Sobolev Inequalities (Evans Sec. 5.6)

• **Definition:** If $1 \le p < n$ (n is our ambient dimension), the Sobolev conjugate of p is

$$p^* := \frac{np}{n-p}$$

Note that

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}, \qquad p^* > p$$

• Theorem: (Gagliardo-Nirenberg-Sobolev inequality) Assume $1 \le p < n$.

There exists a constant C, depending only on n and p, such that

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)}$$
 for all $u \in C_c^1(\mathbb{R}^n)$

• **Theorem:** (Estimates for $W^{1,p}(\Omega)$, $1 \leq p < n$) Let Ω be an open, bounded subset of \mathbb{R}^n with $\partial \Omega$ C^1 . Assume $1 \leq p < n$ and $u \in W^{1,p}(\Omega)$. Then $u \in L^{p^*}(\Omega)$ with

$$||u||_{L^{p^*}(\Omega)} \le C||u||_{W^{1,p}(\Omega)}$$

where C is a constant only depending on n, p, Ω .

• **Theorem:** (Estimates for $W_0^{1,p}(\Omega)$, $1 \le p < n$) Assume Ω is a bounded open subset of \mathbb{R}^n . Suppose $u \in W_0^{1,p}(\Omega)$ for some $1 \le p < n$. Then, we have the estimate

$$||u||_{L^q(\Omega)} \le C||Du||_{L^p(\Omega)}$$

for each $q \in [1, p^*]$, the constant C depending only on p, q, n, Ω .

• Theorem: (Morrey's inequality) Assume n . Then there exists a constant <math>C, depending only on p and n, such that

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$

for all $u \in C^1(\mathbb{R}^n)$, where $\gamma := 1 - n/p$.

• **Theorem:** (Estimates for $W^{1,p}$, $n) Let <math>\Omega$ be a bounded, open, subset of \mathbb{R}^n , and suppose $\partial \Omega$ is C^1 . Assume $n and <math>u \in W^{1,p}(\Omega)$. Then u has a version $u^* \in C^{0,\gamma}(\overline{\Omega})$, for $\gamma = 1 - \frac{n}{p}$, with the estimate

$$||u^*||_{C^{0,\gamma}(\overline{\Omega})} \le C||u||_{W^{1,p}(\Omega)}$$

The constant C depends only on p, n, Ω .

This theorem essentially allows us to replace a Sobolev function, $u \in W^{1,p}$ with p > n with its Holder-continuous counterpart.

Sobolev Embeddings (Compactness) (Evans Sec. 5.7)

• **Definition:** Let X, Y be Banach spaces, $X \subset Y$. We say that X is compactly embedded in Y, denoted

$$X \subset\subset Y$$

provided

- $\|u\|_Y \le C\|u\|_X (u \in X)$ for some constant C.
- Each bounded sequence $(u_k)_{k=1}^{\infty}$ in X is precompact in Y, i.e. boundedness in X implies a convergent subsequence to a limit in Y.

• Theorem: (Rellich-Kondrachov compactness theorem) Assume Ω is a bounded open subset of \mathbb{R}^n and $\partial\Omega$ is C^1 . Suppose $1 \leq p < n$. Then,

$$W^{1,p}(\Omega) \subset\subset L^q(\Omega)$$

for each $1 \le q < p^*$.

Poincare's Inequality (Evans Sec. 5.8.1)

• **Theorem:** (Poincare's inequality) Let Ω be a bounded, connected, open subset of \mathbb{R}^n , with a C^1 boundary $\partial\Omega$. Assume $1 \leq p \leq \infty$. Then there exists a constant C, depending only on n, p, Ω , such that

$$||u - (u)_{\Omega}||_{L^p(\Omega)} \le C||Du||_{L^p(\Omega)}$$

for each function $u \in W^{1,p}(\Omega)$.

Difference Quotients (Evans Sec. 5.8.2)

• **Definition:** Assume $u: \Omega \to \mathbb{R}$ is in $L^1_{loc}(\Omega)$ and $V \subset\subset \Omega$. Then the i^{th} -difference quotient of size h is

$$D_i^h u(x) = \frac{u(x + he_i) - u(x)}{h}$$
 $(i = 1, ..., n)$

for $x \in V$ and $h \in \mathbb{R}$ with $0 < |h| < \operatorname{dist}(V, \partial\Omega)$. We then define the difference quotient to be the vector

$$D^h u := \left(D_1^h u, \dots, D_n^h u\right)$$

- Theorem: (Difference quotients and weak derivatives)
 - 1. Suppose $1 \leq p < \infty$ and $u \in W^{1,p}(\Omega)$. Then for each $V \subset\subset \Omega$

$$||D^h u||_{L^p(V)} \le C||Du||_{L^p(\Omega)}$$

for some constant C and all $0 < |h| < \frac{1}{2}\operatorname{dist}(V, \partial\Omega)$.

2. Assume $1 and <math>u \in L^p(V)$. Then $u \in W^{1,p}(V)$ with $||Du||_{L^p(V)} \le C$.

Sobolev Dual Space (Evans Sec. 5.9.1)

• **Definition:** We denote by $H^{-1}(\Omega)$, the dual space of $H_0^1(\Omega)$. We denote by $\langle \cdot, \cdot \rangle$ the pairing between $H^{-1}(\Omega)$ and $H_0^1(\Omega)$.

• **Definition:** If $f \in H^{-1}(\Omega)$, we define the norm

$$||f||_{H^{-1}(\Omega)} := \sup \left\{ \langle f, u \rangle : u \in H_0^1(\Omega), \ ||u||_{H_0^1(\Omega)} \le 1 \right\}$$

• **Theorem:** (Characterization of H^{-1}) If $f \in H^{-1}(\Omega)$, then there exists f^0, f^1, \ldots, f^n in $L^2(\Omega)$ such that

$$\langle f, v \rangle = \int_{\Omega} f^0 v + \sum_{i=1}^n f^i v_{x_i} dx$$
 for $v \in H_0^1(\Omega)$

and we identify $f \in H^{-1}(\Omega)$ with $f^0 - \sum_{i=1}^n f_{x_i}^i$

Elliptic Equations (Evans Sec. 6.1.1)

• **Definition:** Our focus is on the boundary-value problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is an open bounded subset of \mathbb{R}^n and $u:\overline{\Omega}\to\mathbb{R}$ is the unknown. Here, $f:\Omega\to\mathbb{R}$ is given and L denotes a second order partial differential operator having either the form

$$Lu = -\sum_{i,j=1}^{n} (a^{ij(x)}u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$
 (divergence form)

or

$$Lu = -\sum_{i,j=1}^{n} a^{ij(x)} u_{x_i x_j} + \sum_{i=1}^{n} b^i(x) u_{x_i} + c(x)u \qquad \text{(nondivergence form)}$$

for given coefficient functions a^{ij}, b^i, c .

• **Definition:** We say a partial differential operator L is uniformly elliptic if there exists a constant $\theta > 0$ such that

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2$$

for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^n$.

Weak Solution (Evans Sec. 6.1.2)

• **Definition:** The bilinear form $B[\cdot, \cdot]$ associated with the divergence form elliptic operator L above is

$$B[u, v] := \int_{\Omega} \sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^i u_{x_i} v + cuv \ dx$$

for $u, v \in H_0^1(\Omega)$.

• **Definition:** We say that $u \in H_0^1(\Omega)$ is a weak solution of the boundary-value problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

if

$$B[u,v] = \langle f, v \rangle$$

for every $v \in H_0^1(\Omega)$, where (\cdot, \cdot) denotes the inner product in $L^2(\Omega)$.

• **Definition:** More generally, $u \in H_0^1(\Omega)$ is a weak solution of the boundary-value problem

$$\begin{cases} Lu = f^0 - \sum_{i=1}^n f_{x_i}^i & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

if

$$B[u,v] = \langle f, v \rangle$$

for all $v \in H_0^1(\Omega)$ where $\langle \cdot, \cdot \rangle$ denotes the pairing between $H^{-1}(\Omega)$ and $H_0^1(\Omega)$.

Lax Milgram Theorem (Evans Thm. 6.1.1)

• Theorem: Let H be a real Hilbert Space and assume that

$$B: H \times H \to \mathbb{R}$$

is a bilinear mapping, for which there exists constants $\alpha, \beta > 0$ such that

- 1. $|B[u,v]| \le \alpha ||u||_H ||v||_H$ for $u, v \in H$.
- 2. $\beta ||u||_H^2 \le B[u, u] \text{ for } u \in H.$

Finally, let $f: H \to \mathbb{R}$ be a bounded linear functional on H (i.e. in the dual of H), then there exists a unique element $u \in H$ such that

$$B[u,v] = \langle f, v \rangle$$

for all $v \in H$.

Regularity for Elliptic PDEs

We will assume that $\Omega \subset \mathbb{R}^n$ is bounded and open, $u \in H_0^1(\Omega)$ is a weak solution of

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where L has divergence form

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^{i}(x)u_{x_i} + c(x)u$$

• Theorem: (Interior H^2 -regularity) Assume

$$a^{ij} \in C^1(\Omega) \ b^i, c \in L^{\infty}(\Omega) \quad i, j = 1, \dots, n$$

and $f \in L^2(\Omega)$. Then $u \in H^2_{loc}(\Omega)$ and for each open set $V \subset\subset \Omega$, we have the following estimate.

$$||u||_{H^2(V)} \le C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

• **Theorem:** (Higher interior regularity) Let m be a nonnegative integer and assume

$$a^{ij}, b^i, c \in C^{m+1}(\Omega)$$
 $i, j = 1, \dots, n$

and $f \in H^m(\Omega)$. Then, $u \in H^{m+2}_{loc}(\Omega)$ and for each $V \subset\subset \Omega$, we have the estimate

$$||u||_{H^{m+2}(V)} \le C \left(||f||_{H^m(\Omega)} + ||u||_{L^2(\Omega)}\right)$$

• Theorem: (Infinite differentiability in the interior) Assume

$$a^{ij}, b^i, c \in C^{\infty}(\Omega)$$
 $i, j = 1 \dots, n$

and $f \in C^{\infty}(\Omega)$. Then $u \in C^{\infty}$.

We actually only needed $u \in H^1(\Omega)$ instead of $H^1_0(\Omega)$ in the above theorems.

• **Theorem:** (Boundary H^2 -regularity) Assume

$$a^{ij} \in C^1(\overline{\Omega}), \ b^i, c \in L^{\infty}(\Omega) \qquad i, j = 1, \dots, n$$

Further assume $f \in L^2(\Omega)$ and $\partial \Omega$ is C^2 . Then $u \in H^2(\Omega)$ and we have the estimate

$$||u||_{H^2(\Omega)} \le C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

• **Theorem:** (Higher boundary regularity) Let m be a nonnegative integer and assume

$$a^{ij}, b^i, c \in C^{m+1}(\overline{\Omega})$$
 $i, j = 1, \dots, n$

Further assume $f \in H^m(\Omega)$ and $\partial \Omega$ is C^{m+2} . Then $u \in H^{m+2}(\Omega)$ and we have that estimate

$$||u||_{H^{m+2}(\Omega)} \le C \left(||f||_{H^m(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

• Theorem: (Infinite differentiability up to the boundary) Assume

$$a^{ij}, b^i, c \in C^{\infty}(\overline{\Omega})$$
 $i, j = 1, \dots, n$

Further assume that $f \in C^{\infty}(\overline{\Omega})$ and $\partial \Omega$ is C^{∞} . Then $u \in C^{\infty}(\overline{\Omega})$.

Maximum Principle for Elliptic PDEs

- Theorem: (Weak maximum principle) Assume $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and $c \equiv 0$ in Ω .
 - 1. If $Lu \leq 0$ in Ω , then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$$

2. If $Lu \geq 0$ in Ω , then

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u$$

• **Lemma:** (Hopf's lemma) Assume $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ and $c \equiv 0$ in Ω . Suppose further that $Lu \leq 0$ in Ω and there exists a point $x^0 \in \partial \Omega$ such that

$$u(x^0) > u(x)$$
 for all $x \in \Omega$

Assume finally that Ω satisfies the interior ball condition at x^0 ; that is, there exists an open ball $B \subset \Omega$ with $x^0 \in \partial B$.

Then,

$$\frac{\partial u}{\partial \nu}(x^0) > 0$$

where ν is the outward unit normal to B at x^0 . If $c \geq 0$ in Ω , then the same conclusion above holds, provided

$$u(x^0) \ge 0$$

- **Theorem:** (Strong maximum principle) Assume $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and $c \equiv 0$ in Ω . Suppose also that Ω is connected, open, and bounded. Then,
 - 1. If $Lu \leq 0$ in Ω and u attains its maximum over $\overline{\Omega}$ at an interior point, then u is constant within Ω .
 - 2. If $Lu \geq 0$ in Ω and u attains its minimum over $\overline{\Omega}$ at an interior point, then u is constant within Ω .

2 Part A

Brauer 1.7.2

Find all continuous nonnegative functions f on $0 \le t \le 1$ such that

$$f(t) \le \int_0^t f(s)ds$$

Proof. Notice that the condition above can be rewritten as

$$f(t) \le 0 + \int_0^t f(s)ds$$

Thus, by Gronwall's, $f(t) \leq 0$, so only $f \equiv 0$ satisfies the condition.

Brauer 1.7.3

Let f(t) be a nonnegative function satisfying

$$f(t) \le K_1 + \epsilon(t - \alpha) + K_2 \int_{\alpha}^{t} f(s) ds$$

on an interval $\alpha \leq t \leq \beta$, where ϵ, K_1, K_2 are given positive constants. Show that

$$f(t) \le K_1 e^{K_2(t-\alpha)} + \frac{\epsilon}{K_2} \left(e^{K_2(t-\alpha)} - 1 \right)$$

Proof.

1. Let

$$U(t) = K_1 + \epsilon(t - \alpha) + K_2 \int_{\alpha}^{t} f(s)ds$$

so that $f(t) \leq U(t)$.

2. Next, taking the derivative, we have

$$U'(t) = \epsilon + K_2 f(t) \le \epsilon + K_2 U(t)$$

$$U'(t) - K_2 U(t) - \epsilon \le 0$$

We'll force a product rule by multiplying by $e^{-K_2(t-\alpha)}$. Note that $-K_2(t-\alpha)$ and $-K_2t$ have the same derivative. Thus, we have

$$e^{-K_2(t-\alpha)}U'(t) - K_2e^{-K_2(t-\alpha)}U(t) - \epsilon e^{-K_2(t-\alpha)} \le 0$$
$$\frac{d}{dt} \left[U(t)e^{-K_2(t-\alpha)} \right] - \epsilon e^{-K_2(t-\alpha)} \le 0$$

3. Using FTC, we'll integrate over $[\alpha, t]$ to get

$$U(t)e^{-K_{2}(t-\alpha)} - U(\alpha) + \frac{\epsilon}{K_{2}}e^{-K_{2}(t-\alpha)} - \frac{\epsilon}{K_{2}} \le 0$$

$$U(t)e^{-K_{2}(t-\alpha)} \le U(\alpha) - \frac{\epsilon}{K_{2}} \left(e^{-K_{2}(t-\alpha)} - 1\right)$$

$$U(t) \le K_{1}e^{K_{2}(t-\alpha)} + \frac{\epsilon}{K_{2}} \left(e^{K_{2}(t-\alpha)} - 1\right)$$

and since $f(t) \leq U(t)$ by hypothesis, we are done.

Gronwall's Inequality Differential Form

Let v, u be continuous functions on the interval $\alpha \leq t \leq \beta$. If u is differentiable on (α, β) and satisfies

$$u'(t) \le v(t)u(t)$$
 $t \in (\alpha, \beta)$

then

$$u(t) \le u(\alpha) \exp\left\{ \int_{\alpha}^{t} v(s)ds \right\}$$

Proof. Define

$$w(t) = \exp\left\{ \int_{\alpha}^{t} v(s)ds \right\}$$

so that w(t) > 0 and $w(\alpha) = 1$. Next, observe that

$$w'(t) = w(t)v(t) \implies v(t) = \frac{w'(t)}{w(t)}$$

so by substitution,

$$u'(t) \leq u(t)v(t) \leq \frac{u(t)w'(t)}{w(t)}$$

$$\frac{w(t)u'(t) - u(t)w'(t) \leq 0}{[w(t)u'(t) - u(t)w'(t)} \leq 0 \qquad \text{(multiply by } 1/[w(t)]^2 \text{ since } w > 0)$$

$$\frac{d}{dt} \left(\frac{u(t)}{w(t)}\right) \leq 0 \qquad \text{(force quotient rule)}$$

Now integrate over $[\alpha, t]$ to get

$$\frac{u(t)}{w(t)} - \frac{u(\alpha)}{w(\alpha)} \le 0$$

$$u(t) \le u(\alpha)w(t) = u(\alpha) \exp\left\{\int_{\alpha}^{t} v(s)ds\right\}$$

Brauer 1.7.4

Find all continuous functions f(t) such that

$$[f(t)]^2 = \int_0^t f(s)ds \qquad t \ge 0$$

Proof. We first notice that f(0) = 0. Next, let us consider the following cases

1. If $f(t_0) > 0$ for some $t_0 > 0$, then there exists an open ball $B_r(t_0)$ for which f > 0. Thus,

$$f(t) = \sqrt{[f(t)]^2} \qquad t \in B_r(t_0)$$

is differentiable on $B_r(t_0)$ so taking the derivative of our original equality,

$$2f(t)f'(t) = f(t) \qquad (t \in B_r(t_0))$$

$$2f'(t) = 1 \qquad (f(t) > 0)$$

$$f(t) = \frac{1}{2}t + c$$

and c = 0 since f(0) = 0.

2. If $f(t_0) < 0$ for some $t_0 > 0$, then there exists an open ball $B_r(t_0)$ for which f < 0. Thus, by a similar process, we again have that

$$f(t) = \frac{1}{2}t$$

but since f(0) = 0, it is impossible to have f < 0 since $t \ge 0$ and our slope is positive.

Thus, since f is continous on $[0, \infty)$, we have only the case below:

$$f(t) = \begin{cases} 0 & t < a \\ \frac{1}{2}t & t \ge a \end{cases}$$

for $a \in [0, \infty]$.

Brauer 2.1.2

Write the scalar linear equation $y^{(n)} + a_1(t)y^{(n-1)} + \cdots + a_{n-1}(t)y' + a_ny = b$ as a system $\mathbf{y}' = \mathbf{A}(t)\mathbf{y} + \mathbf{g}(t)$

Proof. We first see that $y^{(n)}(t) = -a_1(t)y^{(n-1)}(t) - \cdots - a_{n-1}y'(t) - a_n(t)y + b(t)$. Now defining

$$y_1 = y$$
, $y_2 = y' = y'_1$, $y_2 = y'' = y'_2$, ..., $y_{n-1} = y^{(n-2)} = y'_{n-2}$, $y_n = y^{(n-1)} = y'_{n-1}$

Then we construct the system,

$$y'_{1} = y_{2}$$
 $y'_{2} = y_{3}$
 \vdots

$$y'_{n-1} = y_{n}$$

$$y'_{n} = -a_{1}(t)y_{n-1} - \dots - a_{n-1}(t)y_{2} - a_{n}(t)y_{1} + b(t)$$

Thus, in matrix notation, we have

$$\underbrace{\begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_{n-1}' \\ y_n' \end{bmatrix}}_{\mathbf{y}'} = \underbrace{\begin{bmatrix} 0 & & & & & & \\ 0 & & I_{n-1} & & & \\ \vdots & & & & & \\ 0 & & & & & \\ -a_n(t) & -a_{n-1}(t) & \cdots & -a_2(t) & a_1(t) & 0 \end{bmatrix}}_{\mathbf{A}(t)} \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix}}_{\mathbf{y}} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b(t) \end{bmatrix}}_{\mathbf{g}(t)}$$

where I_{n-1} denotes the (n-1)-dimension identity matrix.

Brauer 2.3.3

Suppose A(t) and g(t) are continuous for $-\infty < t < \infty$ and that

$$\int_{-\infty}^{\infty} |A(t)|dt < \infty \quad \text{and} \quad \int_{-\infty}^{\infty} |g(t)|dt < \infty$$

Show that the solution $\phi(t)$ of y' = A(t)y + g(t) exists for $-\infty < t < \infty$ and compute a bound for $|\phi(t)|$ valid for $-\infty < t < \infty$.

Proof. Since A, g are continuous for all t and F(t,y) := A(t)y + g(t) is continuous on

$$D = \{(t, y) : -\infty < t < \infty, -\infty < y < \infty\}$$

then by theorem 1.1, a unique continuous solution exists for $-\infty < t < \infty$ so long as $|\phi(t)| < \infty$ for all t.

To show ϕ is uniformly bounded, we first apply theorem 2.1 on a finite interval $-n \le t \le n$ on which a unique continuous solution $\phi(t)$ exists with $\phi(t_0) = \eta$, $|t_0| < n$, and $|\eta| < \infty$.

Since ϕ is a solution of the linear system, we have

$$\int_{t_0}^{t} \phi'(s)ds = \int_{t_0}^{t} A(s)\phi(s)ds + \int_{t_0}^{t} g(s)ds \qquad (t_0 < t < n)$$

$$\phi(t) - \phi(t_0) = \int_{t_0}^{t} A(s)\phi(s)ds + \int_{t_0}^{t} g(s)ds \qquad (FTC)$$

$$|\phi(t)| \le |\eta| + \int_{t_0}^{t} |A(s)||\phi(s)|ds + \int_{t_0}^{t} |g(s)|ds \qquad (triangle ineq.)$$

$$\le |\eta| + \int_{-\infty}^{\infty} |g(s)|ds + \int_{t_0}^{t} |A(s)||\phi(s)|ds \qquad (expand)$$

$$|\phi(t)| \le \left(|\eta| + \int_{-\infty}^{\infty} |g(s)|ds\right) \exp\left\{\int_{t_0}^{t} |A(s)|ds\right\} \qquad (Gronwall)$$

$$\le \left(|\eta| + \int_{-\infty}^{\infty} |g(s)|ds\right) \exp\left\{\int_{-\infty}^{\infty} |A(s)|ds\right\} \qquad (expand)$$

$$< \infty$$

Thus, ϕ is uniformly bounded for all $t \in (-\infty, \infty)$, so the solution may be extended to all $t \in (-\infty, \infty)$.

Corollary of Brauer Thm. 2.2

A fundamental solution to the autonomous linear system, X'(t) = AX, is a nonsingular matrix-valued function, $\Phi : \mathbb{R} \to \mathbb{M}_{d \times d}$, with $\Phi'(t) = A\Phi(t)$.

- (a) Show that $\Psi(t) = e^{At}$ is a fundamental solution satisfying $\Psi(0) = I_n$, the identity matrix.
- (b) Show that $X(t) = \Phi(t)\Phi(0)^{-1}X_0$ is a solution to the IVP, X'(t) = AX, $X(0) = X_0$.
- (c) Show that any fundmantal solution is of the form $\Phi(t) = e^{At}M$, for some non-singular matrix M.

Proof.

(a) First, we see that

$$\Psi(0) = e^{At} \bigg|_{t=0} = \sum_{j=0}^{\infty} \frac{(At)^j}{j!} \bigg|_{t=0} = I + At + \frac{A^2t^2}{2!} + \dots \bigg|_{t=0} = I$$

Next, we'll show that Ψ is a solution to the system.

$$\Psi'(t) = \frac{d}{dt} \left[I + At + \frac{A^2 t^2}{2!} + \cdots \right]$$

$$= A + \frac{A^2 t}{1!} + \frac{A^3 t^2}{2!} + \cdots$$

$$= A \left(\sum_{j=0}^{\infty} \frac{A^j t^j}{j!} \right)$$

$$= A\Psi(t)$$

Last, since $\Psi(0) = I_n$, then $\det \Psi(0) = 1$, so by Abel's formula, $\det \Psi(t) \ge 1$ for all t, so Ψ must be fundamental.

(b) It is clear that $X(0) = X_0$ and

$$X'(t) = \Phi'(t)\Phi(0)^{-1}X_0 = A\Phi(t)\Phi(0)^{-1}X_0 = AX(t)$$

(c) Let Φ be a fundamental solution of the above system. Then since $\Psi(t) = e^{At}$ is also a fundamental solution, then by definition, the columns of $\Psi(t)$ are linearly independent for each t and thus form a basis for the set of solutions of our system. Let $\Psi_j(t)$, $\Phi_j(t)$ denote the jth column of Ψ and Φ respectively. Then there exists constants $(c_{j,k})_{k=1}^n$ such that

$$\Phi_{j}(t) = \sum_{k=1}^{n} \Psi_{k}(t) c_{j,k} = \left(\Psi_{1}(t) \cdots \Psi_{n}(t)\right) \begin{pmatrix} c_{j,1} \\ c_{j,2} \\ \vdots \\ c_{j,n} \end{pmatrix} = \Psi(t) \begin{pmatrix} c_{j,1} \\ c_{j,2} \\ \vdots \\ c_{j,n} \end{pmatrix}$$

Thus,

$$\Phi(t) = (\Phi_1(t) \cdots \Phi_n(t)) = \left(\sum_{k=1}^n \Psi_k(t)c_{1,k} \cdots \sum_{k=1}^n \Psi_k(t)c_{n,k}\right)$$

$$= \left(\Psi(t) \begin{pmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,n} \end{pmatrix} \cdots \Psi(t) \begin{pmatrix} c_{j,1} \\ c_{j,2} \\ \vdots \\ c_{j,n} \end{pmatrix} \cdots \Psi(t) \begin{pmatrix} c_{n,1} \\ c_{n,2} \\ \vdots \\ c_{n,n} \end{pmatrix}\right)$$

$$= \Psi(t) \begin{pmatrix} c_{1,1} & \cdots & c_{n,1} \\ \vdots & \ddots & \vdots \\ c_{1,n} & \cdots & c_{n,n} \end{pmatrix}$$

Now, to show that C is nonsingular, since Φ, Ψ are both fundamental solutions, then $\det \Phi(t) \neq 0$, and $\det \Psi(t) \neq 0$ for all t, so

$$\det(C) = \det(\Psi(0)^{-1}\Phi(0)) = \det(I_n\Phi(0)) = \det\Phi(0) \neq 0$$

Brauer 2.7.3

Show that if all eigenvalues have real part negative or zero, if those eigenvalues with zero real part are simple, and if $\int_{t_0}^{\infty} |g(s)| ds < \infty$, then every solution $\phi(t)$ of

$$y' = Ay + g(t) \qquad y(t_0) = \eta$$

on $0 \le t_0 \le t < \infty$ is bounded.

Proof. Since A is a constant matrix, then we know by variation of parameters, that the unique solution ϕ is

$$\phi(t) = e^{A(t-t_0)}\eta + e^{At} \int_{t_0}^t e^{-As} g(s) ds$$

Thus,

$$|\phi(t)| \le |\eta e^{-At_0}| \cdot |e^{At}| + |e^{-At_0}| \cdot |e^{At}| \int_{t_0}^{\infty} |g(s)| ds$$

and by theorem 2.10, since $0 \ge \Re{\{\lambda_k\}}$ for k = 1, ..., n where λ_k are the eigenvalues of A (λ_k not necessarily distinct), then there exists a constant K > 0 with

$$|e^{At}| \le Ke^{0t} = K$$

Thus,

$$|\phi(t)| \le K|\eta e^{-At_0}| \left(1 + \int_{t_0}^{\infty} |g(s)| ds\right) < M < \infty$$

for some M > 0, so $\|\phi\|_{L^{\infty}([t_0,\infty))} < \infty$.

Brauer 3.1.2

Prove that the initial value problem

$$y'' + g(t, y(t)) = 0,$$
 $y(0) = y_0,$ $y'(0) = z_0$

where g is continuous in some region D containing $(0, y_0)$ is equivalent to the integral equation

$$y(t) = y_0 + z_0 t - \int_0^t (t - s)g(s, y(s))ds$$

Proof. We first see that the latter implies the former since

$$y''(t) = -\frac{d^2}{dt^2} \int_0^t (t - s)g(s, y(s))ds$$

$$= -\frac{d}{dt} \left(\frac{d}{dt} \left[t \int_0^t g(s, y(s))ds - \int_0^t sg(s, y(s))ds \right] \right)$$

$$= -\frac{d}{dt} \left(\int_0^t g(s, y(s))ds + tg(t, y(t)) - tg(t, y(t)) \right)$$

$$= -g(t, y(t))$$
(FTC)

To show that the former implies the latter, we first integrate our IVP.

$$\int_0^s y''(\tau) + g(\tau, y(\tau))d\tau = y'(s) - y'(0) + \int_0^s g(\tau, y(\tau))d\tau$$
$$= y'(s) - z_0 + \int_0^s g(\tau, y(\tau))d\tau$$

Then, we integrate again,

$$\int_{0}^{t} y'(s) - z_{0} + \int_{0}^{s} g(\tau, y(\tau)) d\tau ds = y(t) - y(0) - z_{0}t + \int_{0}^{t} \int_{0}^{s} g(\tau, y(\tau)) d\tau ds$$
$$= y(t) - y_{0} - z_{0}t + \int_{0}^{t} \int_{0}^{s} g(\tau, y(\tau)) d\tau ds \qquad (*)$$

Now using integration by parts on the outer integral (and choosing our u to be the inner integral, v = 1), we have

$$\int_0^t \left(\int_0^s g(\tau, y(\tau)) d\tau \right) ds = s \int_0^s g(\tau, y(\tau)) d\tau \Big|_{s=0}^{s=t} - \int_0^t sg(s, y(s)) ds$$

$$= t \int_0^t g(\tau, y(\tau)) d\tau - \int_0^t sg(s, y(s)) ds$$

$$= \int_0^t (t - s)g(s, y(s)) ds \qquad \text{(relabeling)}$$

Plugging the above into (*) gives the desired result.

Brauer 3.1.13

Consider the integral equation

$$y(t) = e^{it} + \alpha \int_{t}^{\infty} \sin(t-s) \frac{y(s)}{s^2} ds \qquad \alpha \in \mathbb{C}$$

Define the successive approximations

$$\begin{cases} \phi_0(t) \equiv 0 \\ \phi_n(t) = e^{it} + \alpha \int_t^\infty \sin(t - s) \frac{\phi_{n-1}(s)}{s^2} ds \end{cases}$$

(a) Show by induction that

$$|\phi_n(t) - \phi_{n-1}(t)| \le \frac{|\alpha|^{n-1}}{(n-1)!t^{n-1}} \qquad t \in [1, \infty), n \in \mathbb{N}$$

- (b) Show that the ϕ_n converges uniformly on $[1, \infty)$ to a continuous function ϕ .
- (c) Show that the limit ϕ satisfies the above integral equation.
- (d) Show that the limit ϕ satisfies

$$|\phi(t)| \le e^{|\alpha|}$$

Proof. (a) For n = 1, we see that

$$|\phi_1(t) - \phi_0(t)| = |\phi_1(t)| = \left| e^{it} + \alpha \int_t^\infty \sin(t - s) \frac{\phi_0(s)}{s^2} ds \right| = |e^{it}| = 1 = \frac{|\alpha|^{1-1}}{(1 - 1)!t^{1-1}}$$

Assuming the result holds for n, then for n + 1, we have

$$|\phi_{n+1}(t) - \phi_n(t)| \le |\alpha| \int_t^\infty \frac{|\phi_n(s) - \phi_{n-1}(s)|}{s^2} ds$$

$$\le |\alpha| \int_t^\infty \frac{|\alpha|^{n-1}}{(n-1)! s^{n+1}} ds \qquad \text{(inductive hypothesis)}$$

$$= \frac{|\alpha|^n}{(n-1)!} \int_t^\infty s^{-n-1} ds$$

$$= \frac{|\alpha|^n}{n! t^n}$$

(b) Let $\epsilon > 0$ and consider $n, m, N \in \mathbb{N}$ with $n \geq m \geq N$.

$$|\phi_{n}(t) - \phi_{m}(t)| \leq \sum_{k=0}^{n-m-1} |\phi_{n-k}(t) - \phi_{n-1-k}(t)|$$

$$\leq \sum_{k=0}^{n-m-1} \frac{|\alpha|^{n-1-k}}{(n-1-k)!t^{n-1-k}}$$

$$\leq \sum_{k=0}^{n-m-1} \frac{|\alpha|^{n-1-k}}{(n-1-k)!}$$
(since $t \geq 1$)
$$\leq \sum_{k=0}^{n-N-1} \frac{|\alpha|^{n-1-k}}{(n-1-k)!}$$

$$< \sum_{k=0}^{n-N-1} \frac{1}{\sqrt{2\pi(n-1-k)}} \left(\frac{|\alpha|e}{n-1-k}\right)^{n-1-k}$$
(Stirling's approx.)
$$< \sum_{k=0}^{n-N-1} \left(\frac{|\alpha|e}{n-1-k}\right)^{n-1-k}$$

Thus, choosing $N > \frac{|\alpha|e}{\epsilon}$, we have

$$|\phi_n(t) - \phi_m(t)| < \sum_{k=N}^{n-1} \epsilon^k < \sum_{k=N}^{\infty} \epsilon^k = \frac{\epsilon^N}{1 - \epsilon} < \epsilon$$

Thus, $(\phi_n)_{n=1}^{\infty}$ is uniformly Cauchy, and hence converges uniformly by Cauchy's criterion to some ϕ . Moreover, since ϕ_n is continuous for all n, then ϕ must also be continuous.

(c) To show ϕ satisfies the given integral equation, observe

$$e^{it} + \alpha \int_{t}^{\infty} \sin(t - s) \frac{\phi(s)}{s^{2}} ds = e^{it} + \alpha \int_{t}^{\infty} \sin(t - s) \lim_{n \to \infty} \frac{\phi_{n}(s)}{s^{2}} ds$$

$$= \lim_{n \to \infty} \left(e^{it} + \alpha \int_{t}^{\infty} \sin(t - s) \frac{\phi_{n}(s)}{s^{2}} ds \right) \quad \text{(unif. conv.)}$$

$$= \lim_{n \to \infty} \phi_{n+1}(t)$$

$$= \phi(t)$$

(d) Observe that

$$|\phi_n(t)| = \left| \sum_{k=1}^n \phi_k(t) - \phi_{k-1}(t) \right|$$

$$\leq \sum_{k=1}^n |\phi_k(t) - \phi_{k-1}(t)|$$

$$\leq \sum_{k=1}^n \frac{|\alpha|^{k-1}}{(k-1)!t^{k-1}}$$

$$< \sum_{k=0}^\infty \frac{\left(\frac{|\alpha|}{t}\right)^k}{k!}$$

$$= e^{\frac{|\alpha|}{t}}$$

$$< e^{|\alpha|}$$

Tonelli Iteration Scheme

Fix $T > 0, n \in \mathbb{N}$ and define the *Tonelli sequence* by

$$x_n(t) = \begin{cases} x_0 & 0 \le t \le \frac{T}{n} \\ x_0 + \int_0^{t - \frac{T}{n}} f(s, x_n(s)) ds & \frac{T}{n} \le t \le T \end{cases}$$

for the initial value problem

$$x'(t) = f(t, x(t))$$
 $x(0) = x_0$

Using this iteration scheme as an alternative to the successive approximations, state the proper existence theorem and prove it.

Solution: Theorem: Suppose f and $\partial f/\partial x$ are continuous on the closed rectangle

$$R = [-a,a] \times [x_0-b,x_0+b]$$

Then the Tonelli sequence converges uniformly on the interval

$$I = [0, c] \qquad c = \min\left\{a, T, \frac{b}{\|f\|_{\infty}}\right\}$$

to a solution of the initial value problem given above.

Proof. We'll first prove that x_k is well-defined for all $k \in \mathbb{N}$. If $c \leq \frac{T}{k}$, then $x_k \equiv x_0$ for all $t \in [0, c]$ and it is clear that $(t, x_0) \in R$ for $t \in [0, c]$. Now, if $c > \frac{T}{k}$ and x_k fails to be defined on [0, c], then there exists some $t' \in (\frac{T}{k}, c]$ such that $x_k(t') \notin [x_0 - b, x_0 + b]$, so $|x_k(t') - x_0| > b$. However, observe that

$$|x_k(t') - x_0| = \left| \int_0^{t' - \frac{T}{k}} f(s, x_k(s)) ds \right|$$

$$\leq \int_0^{t' - \frac{T}{k}} |f(s, x_k(s))| ds$$

$$\leq ||f||_{\infty} \left(t' - \frac{T}{k} \right)$$

$$\leq ||f||_{\infty} \left(c - \frac{T}{k} \right)$$

$$\leq b - \frac{||f||_{\infty} T}{k}$$

$$< b$$

a contradiction. Thus, x_k is well-defined for all $t \in [0, c]$ for every $k \in \mathbb{N}$

Next, we will show that x_k is continuous on [0, c]. Indeed, if $t_1, t_2 \in \left[\frac{T}{k}, c\right]$ with $t_1 < t_2$, then

$$|x_k(t_1) - x_k(t_2)| \le \int_{t_1 - \frac{T}{k}}^{t_2 - \frac{T}{k}} |f(s, x_k(s))| ds \le ||f||_{\infty} |t_2 - t_1|$$

thus showing that x_k is continuous on $\left[\frac{T}{k}, c\right]$. It is clear that the same estimate holds for all $t_1, t_2 \in [0, c]$, so x_k is continuous on [0, c] for every $k \in \mathbb{N}$.

Now, let $\epsilon > 0$ and let $n > m \ge N$ all be natural numbers with $\frac{T}{N} < c$. Since $f, \partial f/\partial x$ are continuous on R compact, then we know that f is Lipschitz and bounded on R. Now let us observe the following case:

For $t \in [0, c]$, if $t \geq \frac{T}{m}$, then we have that

$$|x_{n}(t) - x_{m}(t)| = \left| \int_{0}^{t - \frac{T}{n}} f(s, x_{n}(s)) ds - \int_{0}^{t - \frac{T}{m}} f(s, x_{m}(s)) ds \right|$$

$$\leq \left| \int_{t - \frac{T}{n}}^{t - \frac{T}{n}} f(s, x_{n}(s)) ds \right| + \left| \int_{0}^{t - \frac{T}{m}} f(s, x_{n}(s)) - f(s, x_{m}(s)) ds \right|$$

$$\leq \int_{t - \frac{T}{n}}^{t - \frac{T}{n}} |f(s, x_{n}(s))| ds + \int_{0}^{t - \frac{T}{m}} |f(s, x_{n}(s)) - f(s, x_{m}(s))| ds$$

$$\leq ||f||_{\infty} \left(\frac{T}{m} - \frac{T}{n} \right) + \int_{0}^{t - \frac{T}{m}} D|x_{n}(s) - x_{m}(s)| ds \quad \text{(Lipschitz)}$$

where D is the Lipschitz constant of f. Next, since $|(x_n - x_m)(t)|$ is clearly nonnegative and x_n is continuous for all n, then we may apply the Gronwall inequality to get

$$|x_n(t) - x_m(t)| \le ||f||_{\infty} \left(\frac{T}{m} - \frac{T}{n}\right) \exp\left\{\int_0^{t - \frac{T}{m}} Dds\right\}$$

$$= ||f||_{\infty} \left(\frac{T}{m} - \frac{T}{n}\right) e^{D\left(t - \frac{T}{m}\right)}$$

$$< ||f||_{\infty} \frac{T}{m} e^{Dc}$$

Thus, if we further suppose $N > \frac{\|f\|_{\infty} T e^{Dc}}{\epsilon}$, then for $n, m \geq N$, we have

$$|x_n(t) - x_m(t)| < \frac{\|f\|_{\infty} T e^{Dc}}{N} < \epsilon$$

We'll now show that this choice of N also holds to show that (x_n) is Cauchy for all $t \in [0, c]$.

Indeed, if $t < \frac{T}{n}$, then (x_n) is clearly Cauchy. If $t \in \left[\frac{T}{n}, \frac{T}{m}\right]$, then

$$|x_n(t) - x_m(t)| = \left| \int_0^{t - \frac{T}{n}} f(s, x_n(s)) ds \right|$$

$$\leq ||f||_{\infty} \left(t - \frac{T}{n} \right)$$

$$\leq ||f||_{\infty} \left(\frac{T}{m} - \frac{T}{n} \right)$$

$$< ||f||_{\infty} \frac{T}{m}$$

Thus, (x_n) is uniformly Cauchy, so it must converge uniformly to some function x. To show that x satisfies the integral equation

$$x(t) = x_0 + \int_0^t f(s, x(s))ds$$

we see that

$$x_n(t) = x_0 + \int_0^t f(s, x_n(s))ds - \int_{t-\frac{T}{n}}^t f(s, x_n(s))ds$$

and since

$$\lim_{n \to \infty} \left| \int_{t - \frac{T}{n}}^{t} f(s, x_n(s)) ds \right| \le \lim_{n \to \infty} ||f||_{\infty} \frac{c}{n} = 0$$

we must have that

$$\lim_{n \to \infty} x_n(t) = x_0 + \lim_{n \to \infty} \int_0^t f(s, x_n(s)) ds$$
$$x(t) = x_0 + \int_0^t f(s, x(s)) ds \qquad (f \text{ continuous})$$

Next, if (t_n) is a convergent sequence to t, then

$$|x(t_n) - x(t)| \le |x(t_n) - x_n(t_n)| + |x_n(t_n) - x_n(t)| + |x_n(t) - x(t)|$$

and each of the three terms above can be made arbitrarily small by continuity of x_n and uniform convergence of x_n to x, so x is continuous on [0, c]. Last, it is clear that $x(0) = x_0$ since $(x_n(0))$ is the constant sequence (x_0) .

Note that we can actually relax the condition that $\partial f/\partial x$ is bounded on R. Instead of using Lipschitz and Gronwall's to get our result, we need to employ Arzela-Ascoli.

Also, this theorem is sometimes referred to as the Cauchy-Peano (existence) theorem.

To remark about why we don't have an issue of circularity with the Tonelli sequence consider the following argument for why $x_n(t)$ is well-defined for all $t \in [0, T]$

$$\begin{cases} x_n(t) = x_0 & t \in [0, T/n] \\ x_n(t) = x_0 + \int_0^{t-T/n} f(s, x_0) ds =: y_1(t) & t \in [T/n, 2T/n] \\ x_n(t) = x_0 + \int_0^{t-T/n} f(s, x_n(s)) ds = x_0 + \int_0^{t-T/n} f(s, y_1(s)) ds =: y_2(t) & t \in [2T/n, 3T/n] \\ \vdots & \vdots & \vdots \\ x_n(t) = x_0 + \int_0^{t-T/n} f(s, y_{k-1}(s)) ds =: y_k(t) & t \in \left[\frac{kT}{n}, \frac{(k+1)T}{n}\right] \\ \vdots & \vdots & \vdots & \vdots \end{cases}$$

At each stage of the above calculation, $x_n(t)$ is well-defined (since all terms involved are ultimately constants), so we can induct on k to show that $x_n(t)$ is well defined for all $t \in [0, T]$.

Strogatz 3.4.14

Consider the system $x' = rx + x^3 - x^5$, which exhibits a subcritical pitchfork bifurcation.

- 1. Find algebraic expressions for all the fixed points as r varies.
- 2. Sketch the vector field as r varies. Be sure to indicate all the fixed points and their stability.
- 3. Calculate r_s , the parameter at which the nonzero fixed points are born in a saddle-node bifurcation.

Solution: Setting x' = 0, we see that $rx + x^3 - x^5 = x(r + x^2 - x^4)$, so the second term is quadratic in x^2 and $x^* = 0$ is always a fixed point.

$$x^{2} = \frac{-1 \pm \sqrt{1+4r}}{-2}$$
$$x = \pm \sqrt{\frac{-1 \pm \sqrt{1+4r}}{-2}}$$

Now, let us consider some cases:

- (1) For $r < -\frac{1}{4}$, the discriminant will be negative, producing no additional fixed points.
- (2) At $r = -\frac{1}{4}$, the discriminant is zero, so we gain two additional fixed points, $\pm \sqrt{\frac{1}{2}}$.
- (3) For $r \in \left(-\frac{1}{4}, 0\right)$, no imaginary terms arise, so we gain 4 additional fixed points.
- (4) For r = 0, $-1 + \sqrt{1 + 4r} = 0$, so we have only have 2 additional fixed points since this zero merges back with the existing $x^* = 0$.
- (5) Last, for r > 0, we have the 2 fixed points from the previous case.

We note that $r_s = -\frac{1}{4}$ since at that parameter and two fixed points are born, at $\pm \sqrt{\frac{1}{2}}$. As r increases past r_s , each of these fixed points then split into pairs of fixed points.

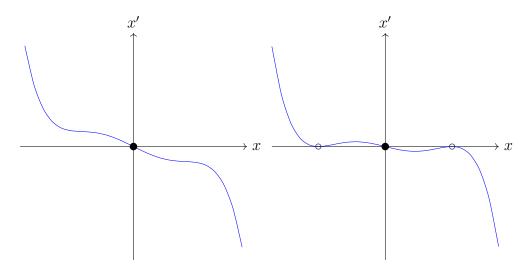


Figure 1: Left: $r < -\frac{1}{4}$, Right: $r = -\frac{1}{4}$

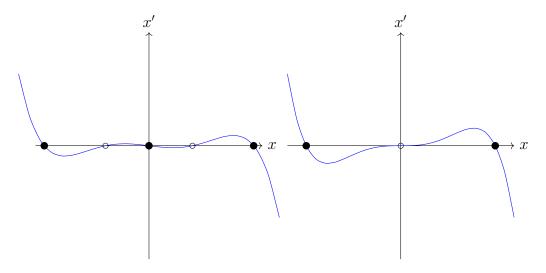


Figure 2: Left: $r \in \left(-\frac{1}{4}, 0\right)$, Right: $r \ge 0$

Strogatz 3.4.10

For the system below, find the values of r at which bifurcations occur and classify those. Finally, sketch the bifurcation diagram of fixed points r vs x^* .

$$x' = rx + \frac{x^3}{1+x^2}$$

Solution: Solving x' = 0, we have

$$x\left((r+1)x^2+r\right) = 0$$

So we have a constant fixed point $x^* = 0$. Examining the other term, we have

$$x^{*2} = \frac{-r}{r+1} \qquad r \neq -1$$

In order to have fixed points, we require the right side to be nonnegative, so let us consider cases for r:

1. If r > -1, then r + 1 > 0, so for $\frac{-r}{r+1} \ge 0$, we have $r \le 0$. Thus, the valid interval which produces fixed points is $r \in (-1,0]$ with fixed points

$$x^* = \pm \sqrt{\frac{-r}{r+1}}$$

2. If r < -1, then -r > 0 and r + 1 < 0, so their quotient is negative so no additional fixed points come from this case.

Using the above information about the fixed points, we see that at $r_p = 0$, represents a pitchfork bifurcation since the split that happens occurs to an existing bifurcation point. In order to see which pitchfork bifurcation occurs, we will check the stability of $x^* = 0$ for values of r > 0. Starting with the left of $x^* = 0$, for r > 0, we have

$$x'\Big|_{x<0} = rx + \frac{x^3}{1+x^2}\Big|_{x<0} < 0$$

so $x^* = 0$ must be unstable since points on the left are moving away from it until r = -1, at which the two branches disappear. Thus, we must have a *subcritical pitchfork* since $x^* = 0$ will switch from unstable to stable at $r_p = 0$

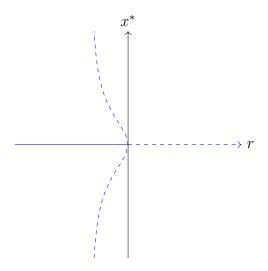


Figure 3: Bifurcation Diagram

3 Part B

Evans 2.5.1

Write down an explicit formula for a function u solving the initial value problem

$$\begin{cases} u_t + b \cdot Du + cu = 0 & \mathbb{R}^n \times (0, \infty) \\ u = g & \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Solution: Given the observation

$$\frac{\partial}{\partial t}[e^{ct}u] = e^{ct}(cu + u_t)$$

we multiply our IVP by e^{ct} and letting $v = e^{ct}u$, we have

$$\begin{cases} v_t + b \cdot Dv = 0 & \mathbb{R}^n \times (0, \infty) \\ v = e^{ct}g & \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Thus, using our solution to the transport problem, we have that

$$v(x,t) = g(x-tb) \Leftrightarrow u(x,t) = e^{-ct}g(x-tb)$$

Evans 2.5.2

Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if $O \in \mathbb{M}_{n \times n}$ is an orthogonal matrix and we define

$$v(x) := u(Ox)$$

then $\Delta v = 0$.

Proof. Let $O = (a_{ij})_{i,j=1}^n$. Then

$$Ox = \left(\sum_{i=1}^{n} a_{ji} x_i\right)_{j=1}^{n}$$

so we'll denote $y_j = \sum_{i=1}^n a_{ji} x_i$ so that u has the form

$$u = u(y_1(x_1, \dots, x_n), \dots, y_n(x_1, \dots, x_n))$$

Then taking the partial w.r.t. x_k , we use the total derivative:

$$\frac{\partial v}{\partial x_k} = \sum_{j=1}^n \frac{\partial u}{\partial y_j} \frac{\partial y_j}{\partial x_k}$$

$$= \sum_{j=1}^n \frac{\partial u}{\partial y_j} a_{jk}$$

$$\frac{\partial^2 v}{\partial x_k^2} = \frac{\partial}{\partial x_k} \sum_{j=1}^n \frac{\partial u}{\partial y_j} a_{jk}$$

$$= \sum_{j=1}^n a_{jk} \sum_{i=1}^n \frac{\partial^2 u}{\partial y_j \partial y_i} \frac{\partial y_i}{\partial x_k}$$

$$= \sum_{j=1}^n a_{jk} \sum_{i=1}^n \frac{\partial^2 u}{\partial y_j \partial y_i} a_{ik}$$

$$\Delta v = \sum_{k=1}^n \frac{\partial^2 v}{\partial x_k^2} = \sum_{k=1}^n \sum_{j=1}^n a_{jk} \sum_{i=1}^n \frac{\partial^2 u}{\partial y_j \partial y_i} a_{ik}$$

$$= \sum_{j=1}^n \frac{\partial^2 u}{\partial y_j \partial y_j} \sum_{k=1}^n a_{jk} (a_{ki})^T$$

By orthogonality, we know that $\sum_{k=1}^{n} a_{jk} (a_{ki})^T = 1$ iff j = k and it is zero otherwise. Thus,

$$\Delta v = \sum_{j=1}^{n} \frac{\partial^2 u}{\partial y_j^2} = \Delta u = 0$$

Note that polar coordinates are defined by $x \mapsto ry$ where r = |x| and $y \in \partial B_1(0)$

Mean Value Theorem for Laplace's equation

If $u \in C^2(\Omega)$ is harmonic, then

$$u(x) = \int_{\partial B_r(x)} u(y)dS(y) = \int_{B_r(x)} u(y)dy$$

Proof. Begin by defining

$$\phi(r) := \int_{\partial B_r(x)} u(y)dS(y)$$

$$= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_r(x)} u(y)dS(y)$$

$$= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_1(0)} u(x+rz)r^{n-1}dS(z) \qquad \text{(Change of variables (Polar))}$$

$$= \frac{1}{n\alpha(n)} \int_{\partial B_1(0)} u(x+rz)dS(z)$$

$$= \int_{\partial B_1(0)} u(x+rz)dS(z)$$

Next, taking the derivative with respect to r,

$$\phi'(r) = \int_{\partial B_1(0)} Du(x + rz)zdS(z)$$

$$= \int_{\partial B_r(x)} Du(y) \frac{y - x}{r} dS(y) \qquad \text{(change variables back to original)}$$

$$= \int_{\partial B_r(x)} \frac{\partial u}{\partial \nu} dS(y) \qquad (Du(y) \frac{y - x}{r} \text{ is the unit normal)}$$

$$= \frac{r}{n} \int_{B_r(x)} \Delta u(y) dy \qquad \text{(Gauss-Green Theorem)}$$

$$= 0$$

Thus, ϕ is constant in r, so

$$\int_{\partial B_r(x)} u(y)dS(y) = \phi(r) = \lim_{t \to 0} \phi(t) = \lim_{t \to 0} \oint_{\partial B_t(x)} u(y)dS(y) = u(x)$$

hence showing the result over a sphere. To show the result over the ball, we use polar coordinates,

$$\int_{B_r(x)} u(y)dy = \int_0^r \left(\int_{\partial B_t(x)} u(y)dS(y) \right) dt$$

$$= \int_0^r \left(n\alpha(n)t^{n-1} \oint_{\partial B_t(x)} u(y)dS(y) \right) dt$$

$$= \int_0^r n\alpha(n)t^{n-1}u(x)dt \qquad \text{(mean value formula over the sphere)}$$

$$= \alpha(n)r^n u(x)$$

Thus, dividing $\alpha(n)r^n$ to the other side, we have

$$\int_{B_r(x)} u(y)dy = u(x)$$

Evans 2.5.3

Modify the proof of the mean-value formulas to show for $n \geq 3$ that

$$u(0) = \int_{\partial B_r(0)} g(x)dS(x) + \frac{1}{n(n-2)\alpha(n)} \int_{B_r(0)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f(x)dx$$

provided

$$\begin{cases}
-\Delta u = f & B_r(0) \\
u = g & \partial B_r(0)
\end{cases}$$

Method 1

Proof. From the proof of the mean value formula, we know that if we define $\phi(r) := \int_{\partial B_r(0)} u(y) dS(y)$, then

$$\phi'(r) = \frac{r}{n} \int_{B_r(0)} \Delta u(y) dy$$

The trick now is to use the fundamental theorem of calculus in r to get us the u(0) and $\phi(r)$ terms.

$$\phi(r) - \phi(\epsilon) = \int_{\epsilon}^{r} \phi'(t)dt, \quad \text{for } 0 < \epsilon < r$$

$$= \int_{\epsilon}^{r} \frac{t}{n} \frac{1}{\alpha(n)t^{n}} \left(\int_{B_{t}(0)} \Delta u(y)dy \right) dt$$

$$= \frac{1}{n\alpha(n)} \int_{\epsilon}^{r} t^{1-n} \left(\int_{B_{t}(0)} \Delta u(y)dy \right) dt$$

To get the rest of the terms, we'll use integration by parts on the outermost integral. Continuing the equality from above, we have

$$= \frac{1}{n\alpha(n)} \left[-\int_{\epsilon}^{r} \frac{t^{2-n}}{2-n} \left(\frac{d}{dt} \int_{B_{t}(0)} \Delta u(y) dy \right) dt + \left(\frac{1}{2-n} t^{2-n} \int_{B_{t}(0)} \Delta u(y) dy \right]_{t=\epsilon}^{t=r} \right]$$

$$= \frac{1}{n(2-n)\alpha(n)} \int_{\epsilon}^{r} t^{2-n} \int_{\partial B_{t}(0)} f(y) dS(y) dt + \frac{1}{n(2-n)\alpha(n)} r^{2-n} \int_{B_{r}(0)} \Delta u(y) dy$$

$$- \frac{1}{n(2-n)\alpha(n)} \int_{B_{\epsilon}(0)}^{r} t^{2-n} \int_{B_{\epsilon}(0)} \Delta u(y) dy$$

$$= \underbrace{\frac{1}{n(2-n)\alpha(n)} \int_{\epsilon}^{r} t^{2-n} \int_{\partial B_{t}(0)} f(y) dS(y) dt}_{H} + \underbrace{\frac{1}{n(n-2)\alpha(n)} r^{2-n} \int_{B_{r}(0)} f(y) dy}_{I}$$

$$+ \underbrace{\frac{1}{n(2-n)\alpha(n)} \epsilon^{2-n} \int_{B_{\epsilon}(0)} f(y) dy}_{J}$$

Considering each integral separately, we'll start with J.

$$J = \frac{1}{n(2-n)\alpha(n)} \epsilon^{2-n} \int_{B_{\epsilon}(0)} f(y) dy$$

$$|J| \le \frac{1}{n(n-2)\alpha(n)} \epsilon^{2-n} \int_{B(0,\epsilon)} |f| dy$$

$$\le ||f||_{\infty} \frac{1}{n(n-2)\alpha(n)} \epsilon^{2-n} \int_{B(0,\epsilon)} dy$$

$$= \frac{||f||_{\infty}}{n(n-2)\alpha(n)} \epsilon^{2-n} \alpha(n) \epsilon^{n}$$

$$= \frac{||f||_{\infty}}{n(n-2)} \epsilon^{2} \to 0 \quad \text{as } \epsilon \to 0.$$

Next, we see that I is already in the desired form, so we'll move onto H.

$$\begin{split} H &= \frac{1}{n(2-n)\alpha(n)} \int_{\epsilon}^{r} t^{2-n} \int_{\partial B_{t}(0)} f(y) dS(y) dt \\ &= \frac{1}{n(2-n)\alpha(n)} \int_{\epsilon}^{r} \int_{\partial B_{t}(0)} \frac{f(y)}{t^{n-2}} dS(y) dt \\ &= \frac{1}{n(2-n)\alpha(n)} \int_{\epsilon}^{r} \int_{\partial B_{t}(0)} \frac{f(y)}{t^{n-2}} dS(y) dt \\ &= \frac{1}{n(2-n)\alpha(n)} \int_{0}^{r} \int_{\partial B_{t}(0)} \frac{f(y)}{t^{n-2}} dS(y) dt - \frac{1}{n(2-n)\alpha(n)} \int_{0}^{\epsilon} \int_{\partial B_{t}(0)} \frac{f(y)}{t^{n-2}} dS(y) dt \\ &= \frac{1}{n(2-n)\alpha(n)} \int_{B_{r}(0)} \frac{f(y)}{|y|^{n-2}} dy - \underbrace{\frac{1}{n(2-n)\alpha(n)} \int_{0}^{\epsilon} \int_{\partial B_{t}(0)} \frac{f(y)}{t^{n-2}} dS(y) dt}_{F} \end{split}$$

Note above that $y \in \partial B_r(0)$ we have |y| = r. Next, we'll look at K.

$$|K| \leq \frac{\|f\|_{\infty}}{n(n-2)\alpha(n)} \int_{0}^{\epsilon} \int_{\partial B_{t}(0)} t^{2-n} dS(y) dt$$

$$= \frac{\|f\|_{\infty}}{n(n-2)\alpha(n)} \int_{0}^{\epsilon} t^{2-n} \left(\int_{\partial B_{t}(0)} dS(y) \right) dt$$

$$= \frac{\|f\|_{\infty}}{n(n-2)\alpha(n)} \int_{0}^{\epsilon} t^{2-n} \left(n\alpha(n)t^{n-1} \right) dt$$

$$\leq \frac{\|f\|_{\infty}}{n-2} \epsilon^{2} \to 0 \quad \text{as } \epsilon \to 0$$

Thus, we have

$$\lim_{\epsilon \to 0} \phi(r) - \phi(\epsilon) = \lim_{\epsilon \to 0} (H + I + J)$$

$$\phi(r) - u(0) = \frac{1}{n(2 - n)\alpha(n)} \int_{B_r(0)} \frac{f(y)}{|y|^{n-2}} dy dt + \frac{1}{n(n-2)\alpha(n)} \int_{B_r(0)} \frac{1}{r^{n-2}} f(y) dy$$

$$u(0) = \int_{\partial B_r(0)} g(y) dS(y) + \frac{1}{n(n-2)\alpha(n)} \int_{B_r(0)} \left(\frac{1}{|y|^{n-2}} - \frac{1}{r^{n-2}}\right) f(y) dy$$

Method 2

Proof. Using Poisson's formula for the ball, we have

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|x - y|^n} dS(y) + \int_{B_r(0)} f(y)G(x, y) dy$$

Let us define

$$\tilde{x} := \frac{rx}{|x|^2} \qquad x \in \mathbb{R}^n \backslash \{0\}$$

Then we note that \tilde{x} is the point dual to x if $x \in B_r(0)$, so

$$G(x,y) = \Phi(y-x) - \Phi(|x|(y-\tilde{x})) \qquad x,y \in B_r(0), x \neq y$$

Thus,

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|x - y|^n} dS(y) + \int_{B_r(0)} f(y) \left(\Phi(y - x) - \Phi(|x|(y - \tilde{x}))\right) dy$$

$$= \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|x - y|^n} dS(y)$$

$$+ \frac{1}{n(n - 2)\alpha(n)} \int_{B_r(0)} f(y) \left(\frac{1}{|y - x|^{n - 2}} - \frac{1}{||x|(y - \tilde{x})|^{n - 2}}\right) dy$$

Our goal now is to evaluate u(0), but we note that $\Phi(x)$ has a singularity at x = 0, so instead we must take the limit as $|x| \to 0$ (equivalent to $\lim_{x\to 0}$ since Φ is radially symmetric). Observe that

$$\lim_{|x|\to 0} \left| |x|(y-\tilde{x}) \right| = \lim_{|x|\to 0} \left| |x|y - |x|\tilde{x} \right|$$

$$= \lim_{|x|\to 0} \lim_{|x|\to 0} \left| |x|y - |x|\tilde{x} \right|$$

$$= \lim_{|x|\to 0} \lim_{|x|\to 0} \left| x|\tilde{x} \right|$$

$$= \lim_{|x|\to 0} \lim_{|x|\to 0} \left| |x|\tilde{x} \right|$$

$$= \lim_{|x|\to 0} \left| |x| \frac{rx}{|x|^2} \right|$$

$$= r$$

$$u(0) = \frac{r}{n\alpha(n)} \int_{\partial B_{r}(0)} \frac{g(y)}{|y|^{n}} dS + \frac{1}{n(n-2)\alpha(n)} \int_{B_{r}(0)} f(y) \left(\frac{1}{|y|^{n-2}} - \frac{1}{r^{n-2}}\right) dy$$

$$= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_{r}(0)} g dS + \frac{1}{n(n-2)\alpha(n)} \int_{B_{r}(0)} f(y) \left(\frac{1}{|y|^{n-2}} - \frac{1}{r^{n-2}}\right) dy$$

$$= \int_{\partial B_{r}(0)} g dS + \frac{1}{n(n-2)\alpha(n)} \int_{B_{r}(0)} f(y) \left(\frac{1}{|y|^{n-2}} - \frac{1}{r^{n-2}}\right) dy$$

Evans 2.5.4

Give a direct proof that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within a bounded open set Ω , then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$$

(Hint: Define $u_{\epsilon} = u + \epsilon |x|^2$ for $\epsilon > 0$, and show u_{ϵ} cannot attain its maximum over $\overline{\Omega}$ at an interior point.)

Proof. Define $u_{\epsilon} := u + \epsilon |x|^2$ and suppose that there exists $x^0 = (x_1^0, x_2^0, \dots, x_n^0) \in \Omega^{\circ}$ such that u_{ϵ} attains its max at x^0 . Next, since u is harmonic, then

$$\Delta u_{\epsilon} = \Delta u + 2\epsilon n = 2\epsilon n > 0$$

However, we now define $f_j: \mathbb{R} \to \mathbb{R}$ by

$$f_i(x) = u_{\epsilon}(x_1^0, \dots, x_{i-1}^0, x, x_{i+1}^0, \dots, x_n^0)$$

so f_j attains its max at $x = x_j^0$. Hence we know that $f_j''(x_j^0) < 0$. Thus, taking the Laplacian at x_0 ,

$$\Delta u_{\epsilon}(x^0) = \sum_{i=1}^n \frac{\partial^2 u_{\epsilon}}{\partial x_j^2}(x^0) = \sum_{i=1}^n f_j''(x_j^0) < 0$$

which contradicts $\Delta u_{\epsilon} > 0$. Thus, no such x^0 may exist, so

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$$

We then see that

$$\max_{\overline{\Omega}} u \leq \max_{\partial \Omega} u_{\epsilon} = \max_{\partial \Omega} u_{\epsilon} = \max_{\partial \Omega} u + \epsilon |x|^2$$

Taking $\epsilon \to 0$, we have

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u$$

and since $\partial\Omega\subset\Omega$, we know that

$$\max_{\partial\Omega}u\leq \max_{\overline{\Omega}}u$$

Evans 2.5.5

We say $v \in C^2(\overline{\Omega})$ is subharmonic if

$$-\Delta v \le 0$$
, in Ω .

(a) Prove for subharmonic v that

$$v(x) \le \int_{B_r(x)} v(y) dy$$
, for all $B_r(x) \subset \Omega$.

- (b) Prove that therefore $\max_{\overline{\Omega}} v = \max_{\partial \Omega} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v := \phi(u)$. Prove v is subharmonic.
- (d) Prove $v := |Du|^2$ is subharmonic whenever u is harmonic.
- (a) Proof. Define $\phi(r) := \int_{\partial B(x,r)} v(y) dS(y)$. Then we know that $\phi'(r) = \frac{r}{n} \int_{B_r(x)} \Delta v(y) dy$. Since $-\Delta v \leq 0$, then $\phi'(r) \geq 0$ for all $r \in \mathbb{R}^+$, so ϕ is increasing in r. Thus

$$v(x) = \lim_{r \to 0} \phi(r) \le \phi(r) = \int_{\partial B_r(x)} v(y) dS(y).$$

Extending to $B_r(x)$ by polar coordinates, we have

$$\int_{B(x,r)} v(y)dy = \int_0^r n\alpha(n)t^{n-1} \left(\oint_{\partial B_t(x)} v(y)dS(y) \right) dt \ge \int_0^r n\alpha(n)t^{n-1}v(x)dt$$

$$= n\alpha(n)v(x)\frac{r^n}{n}$$

$$= \alpha(n)r^n v(x).$$

Hence,
$$v(x) \leq f_{B(x,r)} v(y) dy$$
.

(b) *Proof.* Suppose there exists $x_0 \in \Omega$ such that $v(x_0) = M = \max_{\overline{\Omega}} v$. Then for $r < \operatorname{dist}(x_0, \partial \Omega)$,

$$M = v(x_0) \le \int_{B(x,r)} v(y) dy$$

Hence, v(y) = M for all $y \in B_r(x)$. Now, consider the set $A := v^{-1}(\{M\})$. We have just shown that A must be open. Next, since $\{M\}$ is closed and v is continuous, then $A = v^{-1}(\{M\})$ must be closed as well. Assuming Ω is connected, then A must either be \emptyset or Ω , but we know that $A \neq \emptyset$, so we are done.

(c) Proof. Observe,

$$\Delta v = \Delta(\phi(u)) = \sum_{i=1}^{n} (\phi(u))_{x_i x_i}$$

$$= \sum_{i=1}^{n} \phi''(u)(u_{x_i})^2 + \phi'(u)u_{x_i x_i} \qquad \text{(chain rule)}$$

$$= \sum_{i=1}^{n} \phi''(u)(u_{x_i})^2 + \phi'(u)\Delta u$$

$$= \phi''(u) \sum_{i=1}^{n} (u_{x_i})^2 \qquad \text{(since } \Delta u = 0)$$

$$\geq 0 \qquad \qquad (\phi \text{ convex } \implies \phi'' \geq 0)$$

Thus, $-\Delta v < 0$.

(d) *Proof.* Observe,

$$\Delta(|Du|^2) = \sum_{j=1}^n \sum_{i=1}^n 2\left(\frac{\partial^2 u}{\partial x_j \partial x_i}\right)^2 + 2\frac{\partial u}{\partial x_i} \cdot \frac{\partial}{\partial x_i} \left(\frac{\partial^2 u}{\partial x_j^2}\right)$$

$$= \sum_{i,j=1}^n 2\left(\frac{\partial^2 u}{\partial x_j \partial x_i}\right)^2 + \sum_{i=1}^n 2\frac{\partial u}{\partial x_i} \cdot \frac{\partial}{\partial x_i} (\Delta u)$$

$$= \sum_{i,j=1}^n 2\left(\frac{\partial^2 u}{\partial x_j \partial x_i}\right)^2$$

$$> 0$$

Thus, $-\Delta(|Du|^2) \le 0$.

Evans 2.5.6

Let Ω be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C depending only on Ω , such that

$$\max_{\overline{\Omega}} |u| \le C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$

whenever u is a smooth solution of

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Hint: Consider $-\Delta \left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f|\right)$

Proof. Observe that

$$\Delta \left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f| \right) = \Delta u + \max_{\overline{\Omega}} |f|$$

$$= -f + \max_{\overline{\Omega}} |f|$$

$$\geq 0$$

$$(x \in \Omega)$$

Thus, $-\Delta \left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f|\right) \leq 0$, so $\left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f|\right)$ is subharmonic. Thus, by Evans 2.5.5,

$$\begin{aligned} \max_{\overline{\Omega}} u &\leq \max_{\overline{\Omega}} \left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f| \right) = \max_{\partial \Omega} \left(u + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f| \right) \\ &\leq \max_{\partial \Omega} g + \left(\frac{1}{2n} \max_{\partial \Omega} |x|^2 \right) \max_{\overline{\Omega}} |f| \\ &\leq C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right) \end{aligned}$$

Now, let v := -u and we see that this produces an equivalent system

$$\begin{cases} -\Delta v = -f & \text{in } \Omega \\ v = -g & \text{on } \partial \Omega \end{cases}$$

Then, by a similar process as above, we have $\left(v + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f|\right)$ is subharmonic, so

$$\begin{split} \max_{\overline{\Omega}}(v) & \leq \max_{\overline{\Omega}} \left(v + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f| \right) = \max_{\partial \Omega} \left(v + \frac{|x|^2}{2n} \max_{\overline{\Omega}} |f| \right) \\ & \leq \max_{\partial \Omega} |-g| + \left(\frac{1}{2n} \max_{\partial \Omega} |x|^2 \right) \max_{\overline{\Omega}} |f| \\ & \leq C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right) \end{split}$$

Thus,

$$\max_{\overline{\Omega}}(-u) \le C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$

but since $\max_{\overline{\Omega}}(-u) = -\min_{\overline{\Omega}} u$. Thus,

$$\min_{\overline{\Omega}} u \ge -C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$

Thus, combining both results and then taking $\max_{\overline{\Omega}}$, we have

$$\max_{\overline{\Omega}} |u| \le C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$

Evans 2.5.7

Use Poisson's formula for the ball to prove

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \le u(x) \le r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0)$$

whenever u is harmonic and positive in $B_r(0)$. This is an explicit form of Harnack's inequality.

Proof. Using Poisson's formula for the ball, $B_r(0)$, we have

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|y - x|^n} dS(y) \qquad y \in \partial B_r(0)$$

Since $x \in B_r(0)$, then we know that

$$|y - x| \le |r - x| \le r + |x|$$

Thus,

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|y - x|^n} dS(y) \ge \frac{r - |x|}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{u(y)}{(r + |x|)^{n-1}} dS(y)$$

$$= \frac{r - |x|}{n\alpha(n)r} \frac{1}{(r + |x|)^{n-1}} \int_{\partial B_r(0)} u(y) dS(y)$$

$$= r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} \int_{\partial B_r(0)} u(y) dS(y)$$

$$= r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \qquad \text{(Mean Value)}$$

Next, since $y \in \partial B_r(0)$

$$r = |y| \le |y - x| + |x|$$

then $|y - x| \ge r - |x|$. Thus,

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|y - x|^n} dS(y) \le \frac{r + |x|}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{u(y)}{(r - |x|)^{n-1}} dS(y)$$

$$= \frac{r + |x|}{n\alpha(n)r} \frac{1}{(r - |x|)^{n-1}} \int_{\partial B_r(0)} u(y) dS(y)$$

$$= r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} \oint_{\partial B_r(0)} u(y) dS(y)$$

$$= r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0) \qquad \text{(Mean Value)}$$

Evans 2.5.8

Prove Poisson's formula for the ball. Assume $g \in C(\partial B_r(0))$ and define u by

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B_r(0)} \frac{g(y)}{|y - x|^n} dS(y) \qquad x \in B_r(0)$$

Then,

- (i) $u \in C^{\infty}(B_r(0))$.
- (ii) $\Delta u = 0$ in $B_r(0)$.
- (iii) $\lim_{\substack{x \to x_0 \\ x \in B_r(0)}} u(x) = g(x_0)$ for each $x_0 \in \partial B_r(0)$.

Hint: Since $u \equiv 1$ solves

$$\begin{cases} \Delta u = 0 & \text{in } B_r(0) \\ u = g & \text{on } \partial B_r(0) \end{cases}$$

for $g \equiv 1$, the theory automatically implies

$$\int_{\partial B_r(0)} K(x, y) dS(y) = 1 \quad \text{where } K(x, y) = \frac{r^2 - |x|^2}{n\alpha(n)r} \frac{1}{|x - y|^n}$$

for each $x \in B_r(0)$.

Vector Calculus Identities: Let $\phi, \psi : \mathbb{R}^n \to \mathbb{R}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$

$$\nabla \cdot (\phi F) = \phi(\nabla \cdot F) + (\nabla \phi) \cdot F$$
$$\Delta(\phi \psi) = \phi \Delta \psi + 2(\nabla \phi) \cdot (\nabla \psi) + \psi \Delta \phi$$

Note that we develop Poisson's formula for u(x) as a solution to Laplace's equation under the assumption that a smooth solution exists. The theorem then shows that, indeed, u(x) is smooth and it is a solution to Laplace's equation.

Proof. Let
$$u := r^2 - |x|^2$$
 and $v := |x - y|^{-n}$ so that

$$n\alpha(n)rK(x,y) = uv$$

Calculating, we have $\nabla u = -2x$, $\Delta u = -2n$ and

$$\begin{split} \nabla v &= \nabla |x-y|^{-n} \\ &= -n|x-y|^{-(n+1)} \cdot \nabla |x-y| \\ &= -n|x-y|^{-(n+1)} \cdot \frac{x-y}{|x-y|} \\ &= -n\frac{x-y}{|x-y|^{n+2}} \\ \Delta v &= \nabla \cdot (\nabla v) \\ &= -n\left[|x-y|^{-(n+2)}n - (n+2)|x-y|^{-(n+3)}\frac{(x-y)}{|x-y|} \cdot (x-y)\right] \\ &= -n^2|x-y|^{-(n+2)} + n(n+2)\frac{|x-y|^2}{|x-y|^{n+4}} \\ &= \frac{-n^2}{|x-y|^{n+2}} + \frac{n^2+2n}{|x-y|^{n+2}} \\ &= \frac{2n}{|x-y|^{n+2}} \end{split}$$

Then using the product rule for the Laplacian and noting that |y| = r,

$$\Delta(uv) = (r^2 - |x|^2) \frac{2n}{|x - y|^{n+2}} - 2n \frac{x - y}{|x - y|^{n+2}} \cdot (-2x) + |x - y|^{-n} (-2n)$$
$$|x - y|^{n+2} \Delta(uv) = 2n|y|^2 - 2n|x|^2 + 4n|x|^2 - 4nx \cdot y - 2n|x - y|^2$$
$$= 2n \left(|y|^2 + |x|^2 - 2x \cdot y - |x|^2 - |y|^2 + 2x \cdot y \right)$$
$$= 0$$

Thus, $\Delta K(x,y) = 0$, so K is harmonic. Moreover, since K is continuous for $x \neq y$, then

$$\Delta u(x) = \Delta \left(\int_{\partial B_r(0)} K(x, y) g(y) dS(y) \right) = \int_{\partial B_r(0)} \Delta K(x, y) g(y) dS(y) = 0$$

so u is harmonic and it is clear that $u \in C^2(B_r(0))$, so u satisfies the mean value property for all balls $B_s(x) \subseteq B_r(0)$, so by the smoothness theorem (Evans thm. 2.2.6), we have that $u \in C^{\infty}(B_r(0))$.

Next, note that when $g \equiv 1$, Then by the uniqueness of smooth solutions, $u \equiv 1$ solves,

$$\begin{cases} \Delta u = 0 & \text{in } B_r(0) \\ u = g & \text{on } \partial B_r(0) \end{cases}$$

and by Poisson's formula, if $x \in B_r(0)$,

$$1 = u(x) = \int_{\partial B_r(0)} K(x, y)g(y)dS(y) = \int_{\partial B_r(0)} K(x, y)dS(y)$$

Now let $\epsilon > 0$, $x_0 \in \partial B_r(0)$ and $x \in B_r(0)$. Since $g \in C(\partial B_r(0))$, we can choose $\delta > 0$ such that

$$|g(y) - g(x_0)| < \frac{\epsilon}{2}$$
 when $|y - x_0| < \delta, y \in \partial B_r(0)$

$$|u(x) - u(x_0)| = \left| \int_{\partial B_r(0)} K(x, y) g(y) dS(y) - \int_{\partial B_r(0)} K(x, y) (x_0) |dS(y) \right|$$

$$\leq \int_{\partial B_r(0)} K(x, y) |g(y) - g(x_0)| dS(y)$$

$$= \int_{\partial B_r(0) \cap B_\delta(x_0)} K(x, y) |g(y) - g(x_0)| dS(y)$$

$$+ \int_{\partial B_r(0) \setminus B_\delta(x_0)} K(x, y) |g(y) - g(x_0)| dS(y)$$

$$=: I + J$$

Estimating each integral, we have

$$I < \frac{\epsilon}{2} \int_{\partial B_r(0) \cap B_{\delta}(x_0)} K(x, y) | dS(y) \le \frac{\epsilon}{2}$$

and for J, we first see that if $|x - x_0| < \frac{\delta}{2}$, then since $y \in \partial B_r(0) \backslash B_{\delta}(x_0)$, we know that $|y - x_0| \ge \delta$. Thus,

$$|y - x_0| \le |y - x| + |x - x_0| < |y - x| + \frac{\delta}{2} \le |y - x| + \frac{1}{2}|y - x_0|$$

Hence, $\frac{1}{|y-x|} \le \frac{2}{|y-x_0|} \le \frac{2}{\delta}$, so

$$J \leq 2\|g\|_{L^{\infty}(\partial B_{r}(0))} \int_{\partial B_{r}(0) \setminus B_{\delta}(x_{0})} K(x,y) dS(y)$$

$$= 2\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{r^{2} - |x|^{2}}{n\alpha(n)r} \int_{\partial B_{r}(0) \setminus B_{\delta}(x_{0})} \frac{1}{|y - x|^{n}} dS(y)$$

$$= 2\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{|x_{0}|^{2} - |x|^{2}}{n\alpha(n)|x_{0}|} \int_{\partial B_{r}(0) \setminus B_{\delta}(x_{0})} \frac{1}{|y - x|^{n}} dS(y) \qquad (|x_{0}| = r)$$

$$\leq 2\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{(|x_{0}| - |x|)2\|x_{0}|}{n\alpha(n)|x_{0}|} \int_{\partial B_{r}(0) \setminus B_{\delta}(x_{0})} \frac{1}{|y - x|^{n}} dS(y)$$

$$\leq 2^{2}\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{(|x_{0}| - |x|)}{n\alpha(n)} \int_{\partial B_{r}(0) \setminus B_{\delta}(x_{0})} \frac{1}{|y - x|^{n}} dS(y)$$

$$\leq 2^{2}\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{(|x_{0}| - |x|)}{n\alpha(n)} \int_{\partial B_{r}(0)} \frac{2^{n}}{\delta^{n}} dS(y) \qquad (by above)$$

$$= 2^{n+2}\|g\|_{L^{\infty}(\partial B_{r}(0))} \frac{(|x_{0}| - |x|)}{n\alpha(n)\delta^{n}} n\alpha(n)r^{n-1}$$

$$= \frac{2^{n+2}\|g\|_{L^{\infty}(\partial B_{r}(0))}r^{n-1}}{\delta^{n}} (|x_{0}| - |x|)$$

so further assuming that $|x_0 - x| < \frac{\epsilon \delta^n}{2^{n+3} \|g\|_{L^{\infty}(\partial B_r(0))} r^{n-1}}$, we have

$$J<\frac{\epsilon}{2}$$

Thus,

$$|u(x) - u(x_0)| < I + J < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Evans 2.5.9

Let u be a solution of

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n_+ \\ u = g & \text{on } \partial \mathbb{R}^n_+ \end{cases}$$

given by Poisson's formula for the half-space. Assume g is bounded and g(x) = |x| for $x \in \partial \mathbb{R}^n_+$, $|x| \leq 1$. Show Du is not bounded near x = 0. (Hint: Estimate $\frac{u(\lambda e_n) - u(0)}{\lambda}$).

Proof. Using Poisson's formula for the half-space, we have

$$u(x) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x - y|^n} dS(y)$$

Let M > 0 be a bound on g. By the hint above and noting that u(0) = 0,

$$\frac{u(\lambda e_n) - u(0)}{\lambda} = \frac{2\lambda}{\lambda n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x - y|^n} dS(y)$$

$$= \frac{2}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} \frac{|y|}{|\lambda e_n - y|^n} dS(y) + \frac{2}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \setminus \{|y| \le 1\}} \frac{g(y)}{|x - y|^n} dS(y)$$

$$\geq \frac{2}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} \frac{|y|}{|\lambda e_n - y|^n} dS(y) - \frac{2M}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \setminus \{|y| \le 1\}} \frac{1}{|x - y|^n} dS(y)$$

We see that the second integral above is bounded since $n \geq 2$. (The n = 1 case is trivial since we integrate over a single point.) Now note that for $y \in \partial \mathbb{R}^n_+$, we must have $y_n = 0$ and for $y \in \{|y| \leq 1\}$, we must have $y_i \leq 1$ for $1 \leq i \leq n$. Thus,

$$\frac{2}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} \frac{|y|}{|\lambda e_n - y|^n} dS(y) \ge \frac{2}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} \frac{|y|}{(n + \lambda^2)^{n/2}} dS(y)$$

$$= \frac{2}{n\alpha(n)(n + \lambda^2)^{n/2}} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} |y| dS(y)$$

which goes to $+\infty$ as $\lambda \to 0$. Thus,

$$\lim_{\lambda \to 0} \frac{u(\lambda e_n) - u(0)}{\lambda} = +\infty$$

so $\frac{\partial u}{\partial x_n}$ diverges near 0. Thus, Du cannot be bounded near 0.

Evans 2.5.10

(Reflection Principle)

(a) Let Ω^+ denote the open half-ball,

$$\Omega^{+} = \{ x \in \mathbb{R}^{n} : |x| < 1, x_{n} > 0 \}$$

Assume $u \in C^2(\overline{\Omega^+})$ is harmonic in Ω^+ , with u = 0 on $\partial \Omega^+ \cap \{x_n = 0\}$. Set

$$v(x) := \begin{cases} u(x) & \text{if } x_n \ge 0 \\ -u(x_1, \dots, x_{n-1}, -x_n) & \text{if } x_n < 0 \end{cases}$$

for $x \in \Omega = B_1(0)$. Prove $v \in C^2(\Omega)$ and thus, v is harmonic within Ω .

(b) Now assume only that $u \in C^2(\Omega^+) \cap C(\overline{\Omega^+})$ is harmonic. Show that v is harmonic only in Ω . (Hint: Poisson's formula for the ball.)

Proof.

(a) We see that $v \in C^2(\overline{\Omega^+})$ and $v \in C^2(\Omega \setminus \overline{\Omega^+})$ by definition since $u \in C^2(\overline{\Omega^+})$. Thus, we see that

$$\lim_{x_n \to 0^+} \partial_{x_i x_j} v(x_1, \dots, x_n) = \partial_{x_i x_j} v(x_1, \dots, x_{n-1}, 0) \qquad (v \in C^2)$$

$$= \partial_{x_i x_j} u(x_1, \dots, x_{n-1}, 0)$$

$$= \lim_{x_n \to 0^-} \partial_{x_i x_j} [u(x_1, \dots, x_{n-1}, -x_n)]$$

In the last equality above, we see that

$$\partial_{x_i x_j} [u(x_1, \dots, -x_n)] = -\lim_{x_n \to 0^-} \partial_{x_i x_j} u(x_1, \dots, -x_n) = \lim_{x_n \to 0^-} \partial_{x_i x_j} v(x_1, \dots, x_n)$$

for the case where either i or j equals n. If i, j < n, then we know that u(x) = 0 for

$$x \in \partial \Omega^+ \cap \{x_n = 0\} = \{x \in \mathbb{R}^n : |x| \le 1, x_n = 0\}$$

Thus, $\partial_{x_i} u(x) = 0$ for $1 \le i < n$, and hence $\partial_{x_i x_j} u(x) = 0$ for $1 \le j < n$. Thus, in this case,

$$\lim_{x_n \to 0^+} \partial_{x_i x_j} v(x_1, \dots, x_n) = 0 = \lim_{x_n \to 0^-} \partial_{x_i x_j} v(x_1, \dots, x_n)$$

Finally, for the case where i = j = n, we know that $\Delta u = 0$ since u is harmonic and since $\partial_{x_i x_i} u(x) = 0$ for $1 \le i < n$, then we must have that $\partial_{x_n x_n} u(x) = 0$ as well. Thus, $v \in C^2(\Omega)$ and v is harmonic.

(b) Using Poisson's formula for the ball, we'll define the function

$$w(x) := \begin{cases} \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega} \frac{v(y)}{|x - y|^n} dS(y) & x \in \Omega \\ v(x) & x \in \partial\Omega \end{cases}$$

Then we first make the observation that for $x \in \Omega \cap \{x_n = 0\}$,

$$w(x) = \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega} \frac{v(y)}{|x - y|^n} dS(y)$$

$$= \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega\cap\{y_n = 0\}} \frac{v(y)}{|x - y|^n} dS(y)$$

$$+ \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega\cap\{y_n > 0\}} \frac{v(y)}{|x - y|^n} dS(y)$$

$$+ \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega\cap\{y_n < 0\}} \frac{v(y)}{|x - y|^n} dS(y)$$

$$= 0 + \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega\cap\{y_n > 0\}} \frac{u(y_1, \dots, y_n)}{|x - y|^n} dS(y)$$

$$+ \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega\cap\{y_n < 0\}} \frac{-u(y_1, \dots, y_{n-1}, -y_n)}{|x - y|^n} dS(y)$$

Now, we note that $(x_n - y_n)^2 = (x_n + y_n)^2$ iff $x_n = 0$, so using the reflection $y \mapsto \tilde{y}$ where $\tilde{y} = (y_1, \dots, y_{n-1}, -y_n)$, then

$$w(x) = \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega \cap \{y_n > 0\}} \frac{u(y_1, \dots, y_n)}{|x - y|^n} dS(y) + \frac{1 - |x|^2}{n\alpha(n)r} \int_{\partial\Omega \cap \{y_n > 0\}} \frac{-u(y_1, \dots, y_n)}{|x - y|^n} dS(y)$$

$$= 0$$

Thus, we have that w = v on $\Omega \cap \{x_n = 0\}$, and w = v on $\partial\Omega$. Moreover, since $v \in C^2(\Omega^+) \cap C(\overline{\Omega^+})$ is harmonic, then we may apply the maximum principle on w - v on Ω^+ , to get that

$$\max_{\overline{\Omega^+}} w - v = \max_{\partial \overline{\Omega^+}} w - v = 0 \qquad \text{and} \qquad \min_{\overline{\Omega^+}} w - v = \min_{\partial \overline{\Omega^+}} w - v = 0$$

which, when combined, gives

$$\max_{\overline{\Omega^+}} |w - v| = 0 \qquad \Longrightarrow \qquad w = v \text{ in } \overline{\Omega^+}$$

Similarly, we can show that w = v in $\overline{\Omega} \setminus \overline{\Omega^+}$. Therefore, v is harmonic on all of Ω .

Evans 2.5.12

Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.

(a) Show $u_{\lambda}(x,t) = u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.

(b) Use (a) to show $v(x,t) = x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well.

Proof.

(a) This is almost trivial by direct computation,

$$[u_{\lambda}(x,t)]_t = \lambda^2 u_t(x,t)$$
 $\Delta[u_{\lambda}(x,t)] = \lambda^2 \Delta u(x,t)$

(b) We notice that

$$\partial_{\lambda}[u_{\lambda}(x,t)] = x \cdot Du(\lambda x, \lambda^2 t) + 2\lambda t u_t(\lambda x, \lambda^2 t)$$

and so

$$v(x,t) = [u_{\lambda}(x,t)]_{\lambda}$$
 for $\lambda = 1$

and since u is smooth, we can commute differential operators to get

$$v_t - \Delta v = (\partial_t - \Delta)[v] = (\partial_t - \Delta)(\partial_\lambda)[u_\lambda]$$
$$= \partial_\lambda(\partial_t - \Delta)[u_\lambda]$$
$$= \partial_\lambda[0] = 0$$

Evans 2.5.13

Assume n = 1 and $u(x, t) = v\left(\frac{x}{\sqrt{t}}\right)$.

(a) Show

$$u_t = u_{xx} \qquad \text{iff} \qquad v'' + \frac{z}{2}v' = 0$$

and show that the general solution of the ODE above is

$$v(z) = c_1 \int_0^z e^{-\frac{s^2}{4}} ds + c_2$$

(b) Differentiate $u(x,t) = v\left(\frac{x}{\sqrt{t}}\right)$ w.r.t. x and select the constant c properly to obtain the fundamental solution Φ for n=1. Explain why this procedure produces the fundamental solution. (Hint: What is the initial condition for u?)

Proof.

(a) By direct computation,

$$u_t = v'\left(\frac{x}{\sqrt{t}}\right)\left(-\frac{x}{2t^{3/2}}\right) \qquad u_{xx} = v''\left(\frac{x}{\sqrt{t}}\right)\frac{1}{t}$$

Equating the two and letting $z = \frac{x}{\sqrt{t}}$, we have

$$v'(z)\left(-\frac{z}{2t}\right) = v''(z)\frac{1}{t}$$
$$v'' + \frac{z}{2}v' = 0$$

and solving the above ODE, we have

$$\frac{v''}{v'} = -\frac{z}{2}$$

$$\ln|v'| = -\frac{z^2}{4} + c_1$$

$$v' = c_1 e^{-\frac{z^2}{4}}$$

$$v(z) = c_1 \int_0^z e^{-\frac{s^2}{4}} ds + c_2$$

(b) Differentiating w.r.t. x, we have

$$u_x(x,t) = \frac{c_1}{\sqrt{t}}e^{-\frac{x^2}{4t}}$$

and we notice that $c_1 = \frac{1}{\sqrt{4\pi}}$ gives the fundamental solution for n = 1.

Evans 2.5.14

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

where $c \in \mathbb{R}$.

Proof. Define $v(x,t) := u(x,t)e^{ct}$, then we see that

$$v_t = u_t e^{ct} + cue^{ct}$$
$$\Delta v = \Delta u e^{ct}$$

so

$$v_t - \Delta v = (u_t - \Delta u + cu)e^{ct} = fe^{ct}$$

and

$$v(x,0) = u(x,0) = g$$

Thus, v solves the heat equation so we may use the formula for the inhomogeneous initial value solution:

$$v(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) dy + \int_0^t \frac{1}{(4\pi (t-s))^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4(t-s)}} f(y,s) dy ds$$

Thus, multiplying by e^{-ct} above gives the solution u(x,t) to the original equation.

Evans 2.5.15

Given $g:[0,\infty)\to\mathbb{R}$, with g(0)=0, derive the formula

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} g(s) ds$$

for a solution of the initial/boundary-value problem,

$$\begin{cases} u_t - u_{xx} = 0 & \text{in } \mathbb{R}_+ \times (0, \infty) \\ u = 0 & \text{on } \mathbb{R}_+ \times \{t = 0\} \\ u = g & \text{on } \{x = 0\} \times [0, \infty) \end{cases}$$

(Hint: Let v(x,t) := u(x,t) - g(t) and extend v to $\{x < 0\}$ by odd reflection.)

Proof. Defining v(x,t) := u(x,t) - g(t) for $x \ge 0$ and extending to x < 0 by odd reflection, we have

$$v(x,t) = \begin{cases} u(x,t) - g(t) & x \ge 0 \\ -u(-x,t) + g(t) & x < 0 \end{cases}$$
$$v_t(x,t) = \begin{cases} u_t(x,t) - g'(t) & x \ge 0 \\ -u_t(-x,t) + g'(t) & x < 0 \end{cases}$$
$$v_{xx}(x,t) = \begin{cases} u_{xx}(x,t) & x \ge 0 \\ -u_{xx}(-x,t) & x < 0 \end{cases}$$

Thus, we form the following initial/boundary-value problem

$$\begin{cases} v_t - v_{xx} = \begin{cases} -g'(t) & x \ge 0 \\ g'(t) & x < 0 \end{cases} \\ v(x,0) = 0 & x \ne 0 \\ v(0,t) = 0 & t \in (0,\infty) \end{cases}$$

which takes the form of the heat equation. Thus using the formula for its solution, we have

$$v(x,t) = \int_{0}^{t} \left(\int_{\mathbb{R}_{-}} \Phi(x-y,t-s)g'(s)dy - \int_{\mathbb{R}_{+}} \Phi(x-y,t-s)g'(s)dy \right) ds$$

$$= \int_{0}^{t} \left(2 \int_{\mathbb{R}_{-}} \Phi(x-y,t-s)g'(s)dy - g'(s) \int_{\mathbb{R}} \Phi(x-y,t-s)dy \right) ds$$

$$= \int_{0}^{t} \left(2g'(s) \int_{\mathbb{R}_{-}} \Phi(x-y,t-s)dy - g'(s) \right) ds \qquad (\int_{\mathbb{R}} \Phi(y,t)dy = 1 \text{ for any } t)$$

$$= \int_{0}^{t} 2g'(s) \int_{\mathbb{R}_{-}} \Phi(x-y,t-s)dyds - g(t) - g(0)$$

$$= -g(t) + \int_{0}^{t} \frac{g'(s)}{\sqrt{\pi}\sqrt{t-s}} \int_{\mathbb{R}_{-}} e^{-\frac{|x-y|^{2}}{4(t-s)}} dyds$$

Since v(x,t) = u(x,t) - g(t), then

$$u(x,t) = \int_0^t \frac{g'(s)}{\sqrt{\pi}\sqrt{t-s}} \int_{-\infty}^0 e^{-\frac{|x-y|^2}{4(t-s)}} dy ds$$
$$= \int_0^t \frac{g'(s)}{\sqrt{\pi}} \left(\int_x^\infty \frac{1}{\sqrt{t-s}} e^{-\frac{z^2}{4(t-s)}} dz \right) ds \qquad (z = x - y)$$

Integrating by parts in s, we have

$$\begin{split} u(x,t) &= \left[\frac{g(s)}{\sqrt{\pi}} \int_{x}^{\infty} \frac{1}{\sqrt{t-s}} e^{-\frac{z^2}{4(t-s)}} dz\right]_{s=0}^{s=t} \\ &- \int_{0}^{t} \frac{g(s)}{\sqrt{\pi}} \left(\int_{x}^{\infty} \frac{1}{2} (t-s)^{-3/2} e^{-\frac{z^2}{4(t-s)}} - \frac{z^2}{4(t-s)^{5/2}} e^{-\frac{z^2}{4(t-s)}} dz\right) ds \\ &= - \int_{0}^{t} \frac{g(s)}{\sqrt{\pi}} \int_{x}^{\infty} \frac{1}{2(t-s)^{3/2}} e^{-\frac{z^2}{4(t-s)}} dz ds \\ &+ \int_{0}^{t} \frac{g(s)}{\sqrt{\pi}} \int_{x}^{\infty} \frac{z}{2(t-s)^{3/2}} \frac{d}{dz} \left[e^{-\frac{z^2}{4(t-s)}} \right] dz ds \\ &=: I + J \end{split}$$

Integrating J by parts in z, we have

$$J = \int_0^t \frac{g(s)}{\sqrt{\pi}} \left(\left[\frac{z}{2(t-s)^{3/2}} e^{-\frac{z^2}{4(t-s)}} \right]_x^{\infty} - \int_x^{\infty} \frac{1}{2(t-s)^{3/2}} e^{-\frac{z^2}{4(t-s)}} dz \right) ds$$

$$= \int_0^t \frac{g(s)}{\sqrt{\pi}} \left(\frac{-x}{2(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} - \int_x^{\infty} \frac{1}{2(t-s)^{3/2}} e^{-\frac{z^2}{4(t-s)}} dz \right) ds$$

$$= -\frac{x}{\sqrt{4\pi}} \int_0^t \frac{g(s)}{(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} ds - I$$

$$u(x,t) = -\frac{x}{\sqrt{4\pi}} \int_0^t \frac{g(s)}{(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} ds$$

Evans 2.5.16

Give a direct proof that if Ω is bounded and $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega}_T)$ solves the heat equation $u_t - \Delta u = 0$, then

$$\max_{\overline{\Omega}_T} u = \max_{\Gamma_T} u$$

(Hint: Define $u_{\epsilon} := u - \epsilon t$ for $\epsilon > 0$, and show u_{ϵ} cannot attain its maximum over $\overline{\Omega}_T$ at a point in Ω_T)

Proof. Let $u_{\epsilon} := u - \epsilon t$, $\epsilon > 0$. We first note that if u attains its maximum at a point $(x^0, t_0) \in \Omega_T$, then

$$u_{\epsilon}(x^0, t_0) = u(x^0, t_0) - \epsilon t_0 \ge u(x, t) - \epsilon t_0$$
 for all $(x, t) \in \overline{\Omega}_T$

Taking $\epsilon \to 0$, we have

$$u_{\epsilon}(x^0, t_0) \ge u(x, t) \ge u(x, t) - \epsilon t = u_{\epsilon}(x, t)$$
 for all $(x, t) \in \overline{\Omega}_T$

Thus showing u_{ϵ} attains its max in Ω_T . Thus, by contrapositive, it suffices to show that u_{ϵ} cannot attain its max in Ω_T .

Indeed if u_{ϵ} attains its max at $(x^0, t_0) = (x_1^0, \dots, x_n^0, t_0) \in \Omega_T$, then we first observe that

$$[u_{\epsilon}]_t - \Delta u_{\epsilon} = u_t - \epsilon - \Delta u = -\epsilon < 0$$

Now define $\pi_j : \mathbb{R}^{n+1} \to \mathbb{R}$ as the j-th coordinate map, i.e.

$$\pi_j(x_1,\ldots,x_j,\ldots,x_{n+1})=x_j$$

Then for each $1 \leq j \leq n+1$, define the map $f_j : \pi_j(\Omega_T) \to \mathbb{R}$ by

$$f_j(z) = \begin{cases} u_{\epsilon}(x_1^0, \dots, x_{j-1}^0, z, x_{j+1}^0, \dots, x_n^0, t_0) & 1 \le j \le n \\ u_{\epsilon}(x_1^0, \dots, x_n^0, z) & j = n+1 \end{cases}$$

By definition, we have that $f_j(z)$ attains its max at x_j^0 for $1 \le j \le n$ and at t_0 for j = n + 1, hence $f_j''(z) < 0$ and $f_j'(z) = 0$ at such points. Next, we observe that

$$0 = f'_{n+1}(t_0) = \frac{d}{dz} u_{\epsilon}(x_1^0, \dots, x_n^0, z) \Big|_{z=t_0} = [u_{\epsilon}(x, t)]_t \Big|_{(x,t)=(x^0, t_0)}$$

$$0 > f''_j(x_j^0) = \frac{d^2}{dz^2} u_{\epsilon}(x_1^0, \dots, x_{j-1}^0, z, x_{j+1}^0, \dots, x_n^0, t_0) = [u_{\epsilon}(x, t)]_{x_j x_j} \Big|_{(x,t)=(x^0, t_0)}$$

$$(1 \le j \le n)$$

$$0 < f'_{n=1}(t_0) - \sum_{j=1}^n f''_j(x_j^0) = [u_{\epsilon}]_t - \sum_{j=1}^n [u_{\epsilon}]_{x_j x_j} = [u_{\epsilon}]_t - \Delta u_{\epsilon} < 0$$

a contradiction. Thus, u_{ϵ} does not attain its maximum in Ω_T .

Evans 2.5.24

(Equipartition of energy) Let u solve the initial-value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g, \ u_t = h & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Suppose g, h have compact support. The kinetic energy

$$k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$$

and the potential energy is

$$p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx$$

Prove

- (a) k(t) + p(t) is constant in time t.
- (b) k(t) = p(t) for all large times t.

Proof.

(a) Observe that

$$k(t) + p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2 + u_x^2 dx$$

$$\frac{d}{dt} [k(t) + p(t)] = \frac{1}{2} \int_{-\infty}^{\infty} 2u_t u_{tt} + 2u_x u_{xt} dx$$

$$= \int_{-\infty}^{\infty} u_t u_{tt} - u_{xx} u_t dx \qquad \text{(int. by parts)}$$

$$= 0 \qquad \qquad \text{(by the PDE)}$$

(b) Next, we first recall d'Alembert's formula,

$$u(x,t) = \frac{1}{2} (g(x+t) - g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$

$$u_x(x,t) = \frac{1}{2}(g'(x+t) - g'(x-t)) + \frac{1}{2}(h(x+t) - h(x-t))$$

$$u_t(x,t) = \frac{1}{2}(g'(x+t) + g'(x-t)) + \frac{1}{2}(h(x+t) + h(x-t))$$

$$k(t) - p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2 - u_x^2 dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (u_t - u_x)(u_t + u_x) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (g'(x - t) + h(x - t))(g'(x + t) + h(x + t)) dx$$

Since g, h are compactly supported, then we also have that g' is compactly supported, so choose M > 0 such that

$$supp(g'), supp(h) \subseteq [-M, M]$$

Then for t > M, we'll consider the following cases:

• If
$$x \ge 0$$
, then
$$g'(x+t) = h(x+t) = 0$$
 (since $x+t > M$) so that $k(t) - p(t) = 0$

• If x < 0, then

$$x - t < x - M < -M$$

so
$$g'(x-t) = h(x-t) = 0$$
, so that $k(t) - p(t) = 0$.

Thus, for every $x \in \mathbb{R}$, k(t) - p(t) = 0.

4 Part C

Evans 5.10.1

Prove that the Holder space $C^{k,\gamma}(\overline{\Omega})$ is a Banach space for any nonnegative integer k and $0 < \gamma \le 1$.

Proof. Let α be a multi-index with $|\alpha| = k$. We'll first show that $[\cdot]_{C^{k,\gamma}(\overline{\Omega})}$ is a seminorm.

1. Let $\lambda \in \mathbb{R}$ and $u \in C^{k,\gamma}(\overline{\Omega})$. Then

$$[\lambda u]_{C^{k,\gamma}(\overline{\Omega})} = \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \frac{|D^{\alpha}[\lambda u](x) - D^{\alpha}[\lambda u](y)}{|x - y|} \right\}$$
$$= \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ |\lambda| \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|} \right\}$$
$$= |\lambda| [u]_{C^{k,\gamma}(\overline{\Omega})}$$

2. Let $u, v \in C^{k,\gamma}(\overline{\Omega})$.

$$[u+v]_{C^{k,\gamma}(\overline{\Omega})} = \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \frac{|(u+v)(x) - (u+v)(y)|}{|x+y|} \right\}$$

$$\leq \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \frac{|u(x) - u(y)| + |v(x) - v(y)|}{|x-y|} \right\}$$

$$\leq \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \frac{|u(x) - u(y)|}{|x-y|} \right\} + \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \frac{|v(x) - v(y)|}{|x-y|} \right\}$$

$$= [u]_{C^{k,\gamma}(\overline{\Omega})} + [v]_{C^{k,\gamma}(\overline{\Omega})}$$

Next, defining

$$||u||_{C^{k,\gamma}(\overline{\Omega})} = ||u||_{C^{k}(\overline{\Omega})} + [u]_{C^{k,\gamma}(\overline{\Omega})}$$

we will show that $||u||_{C^{k,\gamma}(\overline{\Omega})}$ is a norm.

- 1. Since $\|\cdot\|_{C^k(\overline{\Omega})}$ is a norm and $[\cdot]_{C^{k,\gamma}(\overline{\Omega})}$ is a seminorm, then we know $\|\lambda u\|_{C^{k,\gamma}(\overline{\Omega})} = |\lambda|\cdot\|u\|_{C^{k,\gamma}(\overline{\Omega})}$ and $\|u+v\|_{C^{k,\gamma}(\overline{\Omega})} \leq \|u\|_{C^{k,\gamma}(\overline{\Omega})} + \|v\|_{C^{k,\gamma}(\overline{\Omega})}$.
- 2. It is clear that $||0||_{C^{k,\gamma}(\overline{\Omega})} = 0$, so suppose now that $||u||_{C^{k,\gamma}(\overline{\Omega})} = 0$. Thus,

$$\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{C(\overline{\Omega})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{\Omega})} = 0$$

Particularly, $||u||_{C(\overline{\Omega})} = 0$ implies that u = 0.

Hence, $\|\cdot\|_{C^{k,\gamma}(\overline{\Omega})}$ is a norm. Now let $\epsilon > 0$ and $(u_n)_{n=1}^{\infty} \subset C^{k,\gamma}(\overline{\Omega})$ be a Cauchy sequence. Then there exists $N \in \mathbb{N}$ such that if $n, m \geq N$ then $\|u_n - u_m\|_{C^{k,\gamma}(\overline{\Omega})} < \epsilon$. Thus, we see that

$$||u_n||_{C^{k,\gamma}(\overline{\Omega})} \le ||u_n - u_N||_{C^{k,\gamma}(\overline{\Omega})} + ||u_N||_{C^{k,\gamma}(\overline{\Omega})} < \epsilon + ||u_N||_{C^{k,\gamma}(\overline{\Omega})} < \infty$$

since $\overline{\Omega}$ is compact. Hence, u_n is bounded, i.e.

$$||u_n||_{C^{k,\gamma}(\overline{\Omega})} \le \max\{||u_1||_{C^{k,\gamma}(\overline{\Omega})}, \cdots ||u_N||_{C^{k,\gamma}(\overline{\Omega})}\}$$

Thus, there exists a convergent subsequence $(u_{n_k})_{k=1}^{\infty}$. Let $\lim_{k\to\infty} u_{n_k} = u$. Next, there exists $N_1, N_2 \in \mathbb{N}$ such that $\|u_n - u_{n_k}\|_{C^{k,\gamma}(\overline{\Omega})} < \epsilon/2$ for $n, n_k \geq N_1$ and $\|u_{n_k} - u\|_{C^{k,\gamma}(\overline{\Omega})} < \epsilon/2$ if $n_k \geq N_2$. Choosing the larger of the two, we have

$$||u_n - u||_{C^{k,\gamma}(\overline{\Omega})} \le ||u_n - u_{n_k}||_{C^{k,\gamma}(\overline{\Omega})} + ||u_{n_k} - u||_{C^{k,\gamma}(\overline{\Omega})} < \epsilon.$$

for all $n, n_k \ge \max\{N_1, N_2\}$. Thus, $u_n \to u$. To show that $u \in C^{k,\gamma}(\overline{\Omega})$, we recall that $u_n \in C^{k,\gamma}(\overline{\Omega})$, so there exists C > 0 such that

$$|D^{\alpha}u_n(x) - D^{\alpha}u_n(y)| < C|x - y|^{\gamma}$$

Thus, if we choose n sufficiently large so that $||u-u_n||_{C^{k,\gamma}(\overline{\Omega})} < \epsilon/2$, we have

$$|D^{\alpha}u(x) - D^{\alpha}u(y)| \le |D^{\alpha}u(x) - D^{\alpha}u_n(x)| + |D^{\alpha}u_n(x) - D^{\alpha}u_n(y)| + |D^{\alpha}u_n(y) - D^{\alpha}u(y)|$$

$$\le 2||u - u_n||_{C^{k,\gamma}(\overline{\Omega})} + |D^{\alpha}u_n(x) - D^{\alpha}u_n(y)|$$

$$< \epsilon + C|x - y|^{\gamma}$$

so we have that

$$|D^{\alpha}u(x) - D^{\alpha}u(y)| \le C|x - y|^{\gamma} < (C + 1)|x - y|^{\gamma}$$

Hence, $u \in C^{k,\gamma}(\overline{\Omega})$.

Evans 5.2 Example 2

Consider the function

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 1 \le x < 2 \end{cases}$$

Show that f(x) does not have a weak derivative.

Solution: Suppose by contradiction that f has a weak derivative g, i.e. f' = g in the weak sense. Then for all test functions, $h \in C_c^{\infty}([0,2])$, we have that

$$\int_0^2 fh' = -\int_0^2 gh \qquad (g = f')$$

$$\int_0^1 h' = -\int_0^2 gh \qquad (Definition of f)$$

$$h(1) - h(0) = -\int_0^2 gh \qquad (FTC)$$

$$h(1) = -\int_0^2 gh \qquad (h \in C_c([0, 2]))$$

Now, consider the sequence $(h_m)_{m=1}^{\infty} \subset C_c^{\infty}([0,2])$ where

$$h_m(x) = (2x - x^2)^m$$

Then, we know that $h_m(1) = 1$ for all m and for $x \in [0,2] \setminus \{1\}$, we see that $2x - x^2 \in (0,1)$, so $h_m(x) \to 0$ as $m \to \infty$. Thus,

$$h_m(1) = 1 = -\int_0^2 g(x)(2x - x^2)^m dx$$

Hence, taking $m \to \infty$, we see that

$$1 = \lim_{m \to \infty} -\int_0^2 g(x)(2x - x^2)^m dx = 0$$

a contradiction. Thus, f does not have a weak derivative.

Product Rule for Weak Derivatives

If $f \in L^1_{loc}(\Omega)$ has a weak partial derivative $f_{x_i} \in L^1_{loc}(\Omega)$ and $\psi \in C^{\infty}(\Omega)$, then ψf is weakly differentiable with respect to x_i and

$$(\psi f)_{x_i} = \psi_{x_i} f + \psi(f_{x_i})$$

Proof. Let $\phi \in C_c^{\infty}(\Omega)$. Then, we know that $(\psi \phi) \in C_c^{\infty}(\Omega)$, so we may use $\psi \phi$ as the test function for the weak differentiability of f.

$$-\int_{\Omega} f_{x_i}(\psi \phi) dx = \int_{\Omega} f(\psi \phi)_{x_i} dx$$

$$= \int_{\Omega} f(\psi_{x_i} \phi + \psi \phi_{x_i}) dx \qquad \text{(classical product rule)}$$

$$= \int_{\Omega} (f \psi_{x_i}) \phi dx + \int_{\Omega} (f \psi) \phi_{x_i} dx$$

$$\int_{\Omega} (f \psi) \phi_{x_i} dx = -\int_{\Omega} (f \psi_{x_i} + f_{x_i} \psi) \phi dx$$

Evans 5.10.2

Assume $0 < \beta < \gamma \le 1$. Prove the interpolation inequality

$$||u||_{C^{0,\gamma}(\Omega)} \le ||u||_{C^{0,\beta}(\Omega)}^{\frac{1-\gamma}{1-\beta}} ||u||_{C^{0,1}(\Omega)}^{\frac{\gamma-\beta}{1-\beta}}$$

Proof. We first recall that

$$||u||_{C^{0,\gamma}(\Omega)} = ||u||_{C(\Omega)} + [u]_{C^{0,\gamma}(\Omega)}$$

and we'll let $p:=\frac{1-\gamma}{1-\beta}$ and $q:=\frac{\gamma-\beta}{1-\beta}$ and we see that p+q=1. Now, we see that

$$\begin{aligned} \|u\|_{C^{0,\gamma}(\Omega)} &= \|u\|_{C(\Omega)}^{p+q} + [u]_{C^{0,\gamma}(\Omega)} \\ &= \|u\|_{C(\Omega)}^{p} \|u\|_{C(\Omega)}^{q} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left(\frac{|u(x) - u(y)|^{p+q}}{|x - y|^{\gamma}} \right) \\ &= \|u\|_{C(\Omega)}^{p} \|u\|_{C(\Omega)}^{q} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left(\frac{|u(x) - u(y)|^{p} |u(x) - u(y)|^{q}}{|x - y|^{q} (|x - y|^{\beta})^{p}} \right) \qquad (q + p\beta = \gamma) \\ &\leq \|u\|_{C(\Omega)}^{p} \|u\|_{C(\Omega)}^{q} + [u]_{C^{0,\beta}(\Omega)}^{p} [u]_{C^{0,1}(\Omega)}^{q} \end{aligned}$$

Now let $a := ||u||_{C(\Omega)}, b := [u]_{C^{0,\beta}(\Omega)}, \text{ and } c := [u]_{C^{0,1}(\Omega)}.$ Then

$$||u||_{C^{0,\gamma}(\Omega)} \leq a^{p}a^{q} + b^{p}c^{q}$$

$$= (a+b)^{p} \left(\frac{a^{p}a^{q}}{(a+b)^{p}} + \frac{b^{p}c^{q}}{(a+b)^{p}}\right) \qquad \text{(force } (a+b)^{p})$$

$$= (a+b)^{p} \left(\frac{a^{1-q}a^{q}}{(a+b)^{1-q}} + \frac{b^{1-q}c^{q}}{(a+b)^{1-q}}\right) \qquad \text{(convert to } q \text{ exponent)}$$

$$= (a+b)^{p} \left(\frac{a}{a+b} \left(\frac{a(a+b)}{a}\right)^{q} + \frac{b}{a+b} \left(\frac{c(a+b)}{b}\right)^{q}\right) \qquad \text{(collect terms with } q)$$

$$\leq (a+b)^{p}(a+c)^{q} \qquad \text{(concavity of } x^{q}, q \in (0,1))$$

$$= ||u||_{C^{0,\beta}(\Omega)}^{\frac{1-\gamma}{1-\beta}}||u||_{C^{0,1}(\Omega)}^{\frac{\gamma-\beta}{1-\beta}}$$

Evans 5.10.4

Assume n = 1 and $u \in W^{1,p}(0,1)$ for some $1 \le p < \infty$.

(a) Show that u is equal a.e. to an absolutely continuous function and u' (which exists a.e.) belongs to $L^p(0,1)$.

(b) Prove that if 1 , then

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt \right)^{1/p}$$

for a.e. $x, y \in [0, 1]$.

Proof.

(a) Since u' exists a.e. and $u' \in L^p(0,1)$, then by Holder's inequality, $u' \in L^1(0,1)$, so let $v(x) := \int_0^x u'(y) dy$ for $x \in (0,1)$. Then by the fundamental theorem of calculus for Lebesgue integrals, we know that v is absolutely continuous on (0,1). Now consider a test function $\phi \in C_c^{\infty}(0,1)$ and observe that

$$\int_0^1 (v - u)\phi' dy = \int_0^1 \left(\int_0^y u'(x) dx \right) \phi'(y) dy - \int_0^1 u(y)\phi'(y) dy$$
$$= -\int_0^1 u'(y)\phi(y) dy + \int_0^1 u'(y)\phi(y) dy$$
$$= 0$$

Since this holds for all $\phi \in C_c^{\infty}(0,1)$, then v=u a.e.

(b) By (a), since u is absolutely continuous a.e., we may apply FTC, to get

$$|u(x) - u(y)| = \left| \int_{x}^{y} u'(t)dt \right| \le \int_{x}^{y} |u'(t)|dt$$

$$\le ||u||_{L^{1}(x,y)} \qquad \text{(assume } x < y)$$

$$\le |x - y|^{1 - \frac{1}{p}} ||u'||_{L^{p}(x,y)}$$

$$\le |x - y|^{1 - \frac{1}{p}} ||u'||_{L^{p}(0,1)}$$

Evans 5.10.7

Assume that Ω is bounded open subset of \mathbb{R}^n and there exists a smooth vector field $\alpha:\Omega\to\mathbb{R}^n$ such that $\alpha\cdot\nu\geq 1$ along $\partial\Omega$, where ν denotes the usual outward unit normal. Assume $1\leq p<\infty$.

Apply the Gauss-Green theorem to $\int_{\partial\Omega} |u|^p \alpha \cdot \nu dS$, to derive a new proof of the trace inequality

$$\int_{\partial\Omega} |u|^p dS \le C \int_{\Omega} |Du|^p + |u|^p dy$$

for all $u \in C(\overline{\Omega})$.

Proof. Since $u \in C(\overline{\Omega})$, applying the Gauss-Green theorem, we have

$$\int_{\partial\Omega} |u|^p dS \leq \int_{\partial\Omega} |u|^p \alpha \cdot \nu dS \qquad (\alpha \cdot \nu \geq 1)$$

$$\leq \int_{\Omega} \nabla \cdot (|u|^p \alpha) dy \qquad (Gauss-Green)$$

$$= \int_{\Omega} |u|^p (\nabla \cdot \alpha) + \nabla (|u|^p) \cdot \alpha dy$$

$$= \int_{\Omega} |u|^p (\nabla \cdot \alpha) + p|u|^{p-1} \operatorname{sgn}(u) (Du \cdot \alpha) dy$$

$$\leq C \int_{\Omega} |u|^p + p|u|^{p-1} |Du| dy \qquad (\alpha \text{ smooth on } \Omega \text{ bounded})$$

$$\leq C \int_{\Omega} |u|^p + p \left(\frac{(|u|^{p-1})^{\frac{p}{p-1}}}{\frac{p}{p-1}} + \frac{|Du|^p}{p} \right) dy \qquad (Young's \text{ inequality})$$

$$= C \int_{\Omega} |u|^p + (p-1)|u|^p + |Du|^p dy$$

$$\leq C \int_{\Omega} |u|^p + |Du|^p dy$$

Evans 5.10.8

Let Ω be bounded, with a C^1 boundary. Show that a typical function $u \in L^p(\Omega)$ $(1 \le p < \infty)$ does not have a trace on $\partial\Omega$. More precisely, prove there does not exist a bounded linear operator

$$T: L^p(\Omega) \to L^p(\partial\Omega)$$

such that $Tu=u\big|_{\partial\Omega}$ whenever $u\in C(\overline{\Omega})\cap L^p(\Omega)$

Proof. Suppose there exists such a T. Then consider the sequence

$$u_n(x) = e^{-n \cdot \operatorname{dist}(x, \partial \Omega)}, \quad x \in \Omega$$

Then it is clear that $u_n(x) \in (0,1]$ for all $n \in \mathbb{N}$ and $x \in \Omega$. Thus, $u_n \in L^2(\Omega)$. For $x \in \partial\Omega$, $u_n(x) = 1$ for all n, and if $x \in \Omega$, then $u_n(x) \to 0$ pointwise as $n \to \infty$, so by the dominated convergence theorem, we have that

$$||u_n||_{L^2(\Omega)}^2 \to 0$$

By definition, since T is bounded, there must exist some C > 0 such that

$$||Tu_n||_{L^2(\partial\Omega)} \le C||u_n||_{L^2(\Omega)}$$

but since $u_n \equiv 1$ on $\partial \Omega$, then $Tu_n \equiv 1$, so for sufficiently large n we have

$$||1||_{L^2(\partial\Omega)} = ||Tu_n||_{L^2(\partial\Omega)} \le C||u_n||_{L^2(\Omega)} < ||1||_{L^2(\partial\Omega)}$$

a contradiction, so no such T may exist.

Evans 5.10.9

Integrate by parts to prove the interpolation inequality:

$$||Du||_{L^2} \le C||u||_{L^2}^{1/2}||D^2u||_{L^2}^{1/2}$$

for all $u \in C_c^{\infty}(\Omega)$. Assume Ω is bounded, $\partial \Omega$ is smooth, and prove the same inequality for $u \in H^2(\Omega) \cap H_0^1(\Omega)$.

Proof. For $u \in C_c^{\infty}(\Omega)$,

$$||Du||_{L^{2}}^{2} = \int_{\Omega} |Du|^{2} dx$$

$$= \int_{\partial\Omega} u \cdot Du \cdot \eta dS(x) - \int_{\Omega} u \Delta u dx \qquad \text{(int. by parts)}$$

$$= 0 - \int_{\Omega} u \Delta u dx$$

$$\leq \int_{\Omega} |u| |\Delta u| dx \qquad (u \in C_{c}(\Omega))$$

$$\leq \int_{\Omega} |u| |D^{2}u| dx \qquad (\Delta u = \operatorname{tr}(D^{2}u))$$

$$\leq ||u||_{L^{2}}^{1/2} ||D^{2}u||_{L^{2}}^{1/2} \qquad \text{(Holder's inequality)}$$

Now assume u is only in $H^2(\Omega) \cap H^1_0(\Omega)$. Then since $W^{n,p} \subseteq W^{m,p}$ for $n \geq m$, then we know that $u \equiv 0$ on $\partial\Omega$ in the trace sense (Trace-zero theorem). Thus, the same calculation as above holds with the only changes being Du in the weak sense and the integral over the boundary is zero because of trace-zero.

Evans 5.10.11

Suppose Ω is connected and $u \in W^{1,p}(\Omega)$ satisfies

$$Du = 0$$
 a.e. in Ω

Prove u is constant a.e. in Ω .

Proof. Let η_{ϵ} be the standard mollifier and define

$$u^{\epsilon} := u * \eta_{\epsilon} \quad \text{in } \Omega_{\epsilon}$$

Then since

$$D[u^{\epsilon}] = D[u * \eta_{\epsilon}] = Du * \eta_{\epsilon} = 0 * \eta_{\epsilon} = 0$$
 in Ω_{ϵ}

Since u^{ϵ} is smooth, then u^{ϵ} must be constant a.e. in Ω_{ϵ} . Moreover since $u^{\epsilon} \to u$ a.e., then u must also be constant a.e. in Ω_{ϵ} . Thus, taking $\epsilon \to 0$ gives u constant a.e. in Ω .

Evans 5.10.14

Verify that if n > 1, the unbounded function $u = \log \log \left(1 + \frac{1}{|x|}\right)$ belongs to $W^{1,n}(\Omega)$, for $\Omega = B_1(0)$.

Proof. We first calculate

$$u_{x_i} = \frac{1}{\ln(1+1/|x|)} \frac{1}{1+1/|x|} \frac{-1}{|x|^2} \frac{x_i}{|x|}$$

$$= \frac{1}{\ln(1+1/|x|)} \frac{-x_i}{|x|+1} \frac{1}{|x|^2}$$

$$|Du| = \frac{1}{\ln(1+1/|x|)} \frac{-1}{|x|+1} \frac{1}{|x|}$$

We'll first show that $Du \in L^n(B_1(0))$. Indeed,

$$||Du||_{L^{n}(B(0,1))} = \int_{B(0,1)} \left[\left(\frac{1}{\ln(1 + \frac{1}{|x|})} \right) \left(\frac{1}{|x| + 1} \right) \frac{1}{|x|} \right]^{n} dx$$

$$= \int_{0}^{1} \int_{\partial B(0,r)} \frac{1}{\ln^{n}(1 + 1/r)} \frac{1}{(r+1)^{n}} \frac{1}{r^{n}} dS(x) dr \qquad \text{(polar coordinates)}$$

$$= \int_{0}^{1} \frac{1}{\ln^{n}(1 + 1/r)} \frac{1}{(r+1)^{n}} \frac{1}{r^{n}} (n\alpha(n)r^{n-1}) dr$$

$$= n\alpha(n) \int_{0}^{1} \frac{1}{\ln^{n}(1 + 1/r)} \frac{1}{(r+1)^{n}} \frac{1}{r} dr$$

$$\leq n\alpha(n) \int_{0}^{1} \frac{1}{\ln^{n}(1 + 1/r)} \frac{1}{r} dr \qquad (\frac{1}{r+1} \leq 1)$$

$$= n\alpha(n) \int_{\ln(2)}^{\infty} \frac{1}{\ln^{n}(1 + 1/r)} \frac{1}{r} r(1 + r) du \qquad \begin{cases} u = \ln(1 + 1/r) \\ dr = -r(1 + r) du \end{cases}$$

$$= n\alpha(n) \int_{\ln(2)}^{\infty} \frac{1}{u^{n}} \left(1 + \frac{1}{e^{u} - 1} \right) du$$

$$< n\alpha(n) \int_{\ln(2)}^{\infty} \frac{1}{u^{n}} du$$

$$< \infty \qquad \text{(since } n > 1)$$

Thus, $Du \in L^n(\Omega)$. Next, we have that

$$||u||_{L^{n}(B(0,1))} = \int_{B(0,1)} \left| \ln \left(\ln \left(1 + \frac{1}{|x|} \right) \right) \right|^{n}$$

$$= n\alpha(n) \int_{0}^{1} r^{n-1} \left| \ln \left(\ln \left(1 + \frac{1}{r} \right) \right) \right|^{n} dr \qquad \text{(polar coordinates)}$$

$$= n\alpha(n) \int_{\ln(2)}^{\infty} r^{n-1} \left| \ln \left(1 + \frac{1}{r} \right) \right|^{n} dr$$

$$= n\alpha(n) \int_{\ln(2)}^{\infty} r^{n-1} \left| \ln \left(1 + \frac{1}{r} \right) \right|^{n} r(1+r) du \qquad \begin{cases} u = \ln(1+1/r) \\ dr = -r(1+r) du \end{cases}$$

$$= n\alpha(n) \int_{\ln(2)}^{\infty} \left(\frac{1}{e^{u} - 1} \right)^{n} u^{n} \left(1 + \frac{1}{e^{u} - 1} \right) du$$

$$\leq 2 \int_{\ln(2)}^{\infty} \left(\frac{u}{e^{u} - 1} \right)^{n} du \qquad (\frac{1}{e^{u} - 1} \leq 2)$$

$$\leq 2 \int_{\ln(2)}^{\infty} \left(\frac{u}{e^{u} - \frac{1}{2}e^{u}} \right)^{n} du$$

$$\leq 2^{n+1} \int_{\ln(2)}^{\infty} \frac{u^{n}}{e^{nu}} du$$

$$\leq \infty \qquad \text{(Integration by parts } n \text{ times)}$$

Thus, $u \in L^n(\Omega)$ as well. Finally, we want to confirm that Du is indeed the weak derivative of u, but we know that u is pointwise differentiable in the classical sense away from x = 0, so for $\phi \in C_c^{\infty}(\Omega)$, observe that

$$\int_{\Omega \setminus B_{\epsilon}(0)} u\phi' dx = -\int_{\Omega \setminus B_{\epsilon}(0)} Du\phi dx + \int_{\partial B_{\epsilon}(0)} u\phi dS(x) + \int_{\partial \Omega} u\phi dS(x)
= -\int_{\Omega \setminus B_{\epsilon}(0)} Du\phi dx + \int_{\partial B_{\epsilon}(0)} u\phi dS(x)$$
 (since $\phi \in C_{c}(\Omega)$)

Taking the last integral, we see that

$$\int_{\partial B_{\epsilon}(0)} u\phi dS(x) = \int_{\partial B_{\epsilon}(0)} \ln\left(\ln\left(1 + \frac{1}{|x|}\right)\right) \phi(x) dS(x)$$

$$\leq \|\phi\|_{L^{\infty}(\partial B_{\epsilon}(0))} \int_{\partial B_{\epsilon}(0)} \ln\left(1 + \frac{1}{|x|}\right) dS(x)$$

$$= \|\phi\|_{L^{\infty}(\partial B_{\epsilon}(0))} n\alpha(n) \ln\left(1 + \frac{1}{\epsilon}\right) \epsilon^{n-1}$$

and since n > 1 and we know that

$$\lim_{\epsilon \to 0^+} \epsilon \ln \left(1 + \frac{1}{\epsilon} \right) \to 0$$
 (by L'hopital's)

then we may take $\epsilon \to 0^+$ to find

$$\int_{\Omega} u\phi' dx = -\int_{\Omega} Du\phi dx$$

Evans 5.10.15

Fix $\alpha > 0$ and let $\Omega = B_1(0)$. Show that there exists a constant C, depending only on n and α , such that

$$\int_{\Omega} u^2 dx \le C \int_{U} |Du|^2 dx$$

provided

$$|\{x \in \Omega : u(x) = 0\}| \ge \alpha \qquad u \in H^1(\Omega)$$

Proof. Using Poincare's inequality, we have

$$C \int_{\Omega} |Du|^2 dx \ge \int_{\Omega} (u - (u)_{\Omega})^2 dx$$

$$= \int_{\Omega} u^2 - 2u(u)_{\Omega} + (u)_{\Omega}^2 dx$$

$$= \int_{\Omega} u^2 - u(u)_{\Omega} dx - (u)_{\Omega} \int_{\Omega} u dx + (u)_{\Omega}^2 |\Omega|$$

$$= \int_{\Omega} u^2 - u(u)_{\Omega} dx - (u)_{\Omega} \frac{|\Omega|}{|\Omega|} \int_{\Omega} u dx + (u)_{\Omega}^2 |\Omega|$$

$$= \int_{\Omega} u^2 - u(u)_{\Omega} dx - |\Omega|(u)_{\Omega}^2 + (u)_{\Omega}^2 |\Omega|$$

$$= \int_{\Omega} u^2 - u(u)_{\Omega} dx$$

Next, we have that

$$\int u(u)_{\Omega} dx = \frac{1}{|\Omega|} \left(\int_{\Omega} u dx \right)^{2} \leq \frac{1}{|\Omega|} \|1\|_{L^{2}(\{x \in \Omega: u(x) \neq 0\})}^{2} \|u\|_{L^{2}(\{x \in \Omega: u(x) \neq 0\})}^{2} \quad \text{(Holder's ineq.)}$$

$$\leq \frac{|\Omega| - \alpha}{|\Omega|} \|u\|_{L^{2}(\{x \in \Omega: u(x) \neq 0\})}^{2} \quad \text{(measure of support of } u)$$

$$= \frac{|\Omega| - \alpha}{|\Omega|} \|u\|_{L^{2}(\Omega)}^{2} \quad \text{(since } u = 0 \text{ outside of its support)}$$

Thus, combining both results,

$$C \int_{\Omega} |Du|^2 dx \ge \int_{\Omega} u^2 dx - \frac{|\Omega| - \alpha}{|\Omega|} ||u||_{L^2(\Omega)}^2$$
$$= \left(1 - \frac{|\Omega| - \alpha}{|\Omega|}\right) ||u||_{L^2(\Omega)}^2$$

and since $\alpha \leq |\Omega|$, we may divide it over and we are done.

Evans 5.10.17

(Chain rule) Assume $F: \mathbb{R} \to \mathbb{R}$ is C^1 , with F' bounded. Suppose Ω is bounded and $u \in W^{1,p}(\Omega)$ for some $1 \leq p \leq \infty$. Show

$$v := F(u) \in W^{1,p}(\Omega)$$
 and $v_{x_i} = F'(u)u_{x_i}$ for $i = 1, \dots, n$

Proof. We'll first show that $v \in L^p(\Omega)$. Let $(u_m) \subset C^{\infty}(\Omega)$ be a smooth sequence approximating u. Then

$$||v||_{L^{p}(\Omega)} = ||F(u)||_{L^{p}(\Omega)} \le ||F(u) - F(u_{m})||_{L^{p}(\Omega)} + ||F(u_{m})||_{L^{p}(\Omega)}$$

$$= \left(\int_{\Omega} |F(u) - F(u_{m})|^{p}\right)^{1/p} + ||F(u_{m})||_{L^{p}(\Omega)}$$

$$\le \left(\int_{\Omega} C^{p}|u - u_{m}|^{p}\right)^{1/p} + ||F(u_{m})||_{L^{p}(\Omega)} \qquad (F \text{ Lipschitz})$$

$$= C||u - u_{m}||_{L^{p}(\Omega)} + ||F(u_{m})||_{L^{p}(\Omega)}$$

$$< \infty$$

with the last inequality holding since $u_m \to u$ in L^p and $F \in C^1(\mathbb{R})$, with Ω bounded.

Next, we'll show that $v_{x_i} = F'(u)u_{x_i}$. Using smooth approximation (as shown above in the Lipschitz argument), we know that

$$F(u_m) \to F(u) = v$$
 in $L^p(\Omega)$

Next, we have that

$$||F'(u_m)[u_m]_{x_i} - F'(u)u_{x_i}||_{L^p(\Omega)} = ||F'(u_m)[u_m]_{x_i} - F'(u_m)u_{x_i} + F'(u_m)u_{x_i} - F'(u)u_{x_i}||_{L^p(\Omega)}$$

$$\leq ||F'(u_m)([u_m]_{x_i} - u_{x_i})||_{L^p} + ||(F'(u_m) - F'(u))u_{x_i}||_{L^p}$$

$$\leq ||F'||_{L^{\infty}(u_m(\Omega))}||[u_m]_{x_i} - u_{x_i}||_{L^p} + ||(F'(u_m) - F'(u))u_{x_i}||_{L^p}$$

$$\to 0$$

where the first integral goes to 0 by $W^{1,p}$ convergence and the second goes to 0 by the dominated convergence theorem since $F' \in C(\mathbb{R})$. Thus, $F(u_m) \to F(u)$ and $F'(u_m)[u_m]_{x_i} \to F'(u)u_{x_i}$ in $L^p(\Omega)$ so by the uniqueness of the weak derivative, we must have that

$$[F(u)]_{x_i} = F'(u)u_{x_i}$$
 for a.e. $x \in \Omega$

Last, $Dv = F'(u)Du \in L^p(\Omega)$ since $F' \in C(u(\Omega))$ and $Du \in L^p(\Omega)$.

Evans 6.6.2

Let

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij}u_{x_i}\right)_{x_j} + cu$$

Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form $B[\cdot,\cdot]$ satisfies the hypothesis of the Lax-Milgram theorem, provided $c(x) \geq -\mu$ for all $x \in \Omega$.

Proof. We will first prove that there exists $\alpha > 0$ such that

$$|B[u,v]| \le \alpha ||u||_{H_0^1(\Omega)} ||v||_{H_0^1(\Omega)}$$

for $u, v \in H_0^1(\Omega)$. Indeed,

$$|B[u,v]| = \left| \int_{\Omega} -\sum_{i,j=1}^{n} \left(a^{ij} u_{x_i} \right)_{x_j} v + cuv \ dx \right|$$

$$= \left| \int_{\Omega} \sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} + cuv \ dx \right| \qquad \text{(int. by parts)}$$

$$\leq \sup_{1 \leq i,j \leq n} \|a^{ij}\|_{\infty} \int_{\Omega} |Du| |Dv| dx + \|c\|_{\infty} \int_{\Omega} |u| |v| dx \qquad (a^{ij}, c \text{ bounded)}$$

$$\leq \alpha \left(\|DuDv\|_{L^1} + \|uv\|_{L^1} \right) \qquad \text{(take } \alpha \text{ max)}$$

$$\leq \alpha \left(\|Du\|_{L^2} \|Dv\|_{L^2} + \|u\|_{L^2} \|v\|_{L^2} \right) \qquad \text{(Holder's ineq.)}$$

$$\leq \alpha \|u\|_{H_0^1} \|v\|_{H_0^1} \qquad \text{(since } \|u\|_{L^2}, \|Du\|_{L^2} \leq \|u\|_{H_0^1}$$

Next, we'll show that

$$\beta \|u\|_{H_0^1(\Omega)}^2 \le B[u, u]$$

for a certain $\mu > 0$. By uniform ellipticity, there exists $\theta > 0$ such that

$$\theta \int_{\Omega} |Du|^2 dx \le \int_{\Omega} \sum_{i,j=1}^n a^{ij} u_{x_i} u_{x_j}$$

$$= B[u, u] - \int_{\Omega} cu^2 dx \qquad \text{(int. by parts on } B[u, u])$$

$$\le B[u, u] + \mu \int_{\Omega} u^2 dx \qquad (c(x) \ge -\mu)$$

$$\le B[u, u] + A\mu \int_{\Omega} |Du|^2 dx \qquad \text{(Estimate on } W_0^k(\Omega))$$

$$(\theta - A\mu) \int_{\Omega} |Du|^2 dx \le B[u, u]$$

Choosing $0 < \mu < \frac{\theta}{A}$ gives us $\theta - A\mu > 0$ and using the estimate on $W_0^k(\Omega)$ again gives us that

$$\beta \|u\|_{H_0^1}^2 \leq \frac{\theta - A\mu}{2A} \int_{\Omega} u^2 dx + \frac{\theta - A\mu}{2} \int_{\Omega} |Du|^2 dx \leq (\theta - A\mu) \int_{\Omega} |Du|^2 dx \leq B[u, u]$$
 where $\beta = \min\left\{\frac{\theta - A\mu}{2A}, \frac{\theta - A\mu}{2}\right\}.$

Evans 6.6.3

A function $u \in H_0^2(\Omega)$ is a weak solution of this boundary-value problem for the biharmonic equation

$$\begin{cases} \Delta^2 u = f & \text{in } \Omega \\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$

provided

$$\int_{\Omega} \Delta u \Delta v dx = \int_{\Omega} f v dx$$

for all $v \in H_0^2(\Omega)$. Given $f \in L^2(\Omega)$, prove that there exists a unique weak solution for the biharmonic equation.

Proof. In order to invoke Lax-Milgram, we'll prove that the differential operator

$$Lu = -\Delta^2 u$$

satisfies its hypothesis.

1. Observe that

$$|B[u,v]| = \left| \int_{\Omega} -\Delta^2 u v dx \right|$$

$$= \left| \int_{\Omega} \Delta u \Delta v \right| \qquad \text{(int. by parts and } \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \text{)}$$

$$\leq \int_{\Omega} |\Delta u \Delta v| dx$$

$$\leq \|\Delta u\|_{L^2(\Omega)} \|\Delta v\|_{L^2(\Omega)} \qquad \text{(Holder's ineq.)}$$

$$\leq \|u\|_{H^2_0(\Omega)} \|v\|_{H^2_0(\Omega)} \qquad \text{(since } \|u\|_{L^2}, \|Du\|_{L^2}, \|\Delta u\|_{L^2} \leq \|u\|_{H^2_0} \text{)}$$

2. Next, we first observe that

$$||u||_{L^{2}(\Omega)}^{2} \leq C_{1}||Du||_{L^{2}(\Omega)}$$

$$= C \int_{\Omega} -u\Delta u dx \qquad \text{(int. by parts)}$$

$$\leq C||u||_{L^{2}(\Omega)}||\Delta u||_{L^{2}(\Omega)} \qquad \text{(Holder's ineq.)}$$

$$||u||_{L^{2}(\Omega)} \leq C||\Delta u||_{H_{0}^{2}(\Omega)}$$

followed by

$$||Du||_{L^{2}(\Omega)}^{2} \leq ||u||_{L^{2}(\Omega)} ||\Delta u||_{L^{2}(\Omega)}$$

$$\leq C||Du||_{L^{2}(\Omega)} ||\Delta u||_{L^{2}(\Omega)}$$
(estimate on $W_{0}^{1,p}$)
$$||Du||_{L^{2}(\Omega)} \leq C||\Delta u||_{L^{2}(\Omega)}$$

Thus, we have that

$$\|\Delta u\|_{L^2(\Omega)}^2 \ge \frac{1}{C} \|Du\|_{L^2(\Omega)}^2$$
 and $\|\Delta u\|_{L^2(\Omega)}^2 \ge \frac{1}{C} \|u\|_{L^2(\Omega)}^2$

Thus, we have

$$B[u,u] = \|\Delta u\|_{L^2}^2 = 3\left(\frac{1}{3}\right) \|\Delta u\|_{L^2}^2 \ge \frac{1}{3} \|\Delta u\|_{L^2}^2 + \frac{1}{3C} \left(\|Du\|_{L^2}^2 + \|u\|_{L^2}^2 \right) \ge \beta \|u\|_{H_0^2(\Omega)}$$

by letting $\beta = \min\{1/3, 1/3C\}$.

Evans 6.6.4

Assume Ω is connected. A function $u \in H^1(\Omega)$ is a weak solution of Neumann's problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$

if

$$\int_{\Omega} Du \cdot Dv dx = \int_{\Omega} fv dx$$

for all $v \in H^1(\Omega)$. Suppose $f \in L^2(\Omega)$. Prove that Neumann's problem has a weak solution iff

$$\int_{\Omega} f dx = 0$$

Proof Outline. 1. Forward direction is trivial, just choose $v \equiv 1$.

- 2. For the backward direction, we want to invoke Lax-Milgram, but constant functions break the $B[u, u] \ge \beta ||u||_{H^1}^2$ condition. Other condition is trivial.
- 3. With the fact that the average of constant functions are themselves, we restrict H^1 to just those that have average equal to zero.
- 4. Prove this is a closed subset of H^1 under the same norm, thus making it a Hilbert space as well
- 5. Use Poisson's ineq. to split $||Du||_{L^2}^2$ to find $||u||_{H^1}^2$

6. Lax-Milgram gives a solution on the restricted Hilbert space. Extend it to Ω by using the hypothesis $\int f dx = 0$.

Proof. (\Rightarrow) In the forward direction, since we know that

$$\int_{\Omega} Du \cdot Dv dx = \int_{\Omega} fv dx \qquad \text{for all } v \in H^{1}(\Omega)$$

then we simply choose $v \equiv 1 \in H^1(\Omega)$ so that

$$\int_{\Omega} f dx = \int_{\Omega} Du \cdot 0 dx = 0$$

(\Leftarrow) Our goal now is to invoke Lax-Milgram. We first define $Lu = -\Delta u$ and using integration by parts, we see that

$$B[u,v] = \int_{\Omega} Luv dx = \int_{\Omega} -\Delta uv dx = \int_{\Omega} Du \cdot Dv dx \qquad \text{(since } \frac{\partial u}{\partial \nu} = 0\text{)}$$

Thus, for boundedness, we have

$$|B[u,v]| \le \int_{\Omega} |Du| |Dv| dx \le ||Du||_{L^{2}(\Omega)} ||Dv||_{L^{2}(\Omega)} \le ||u||_{H^{1}(\Omega)} ||v||_{H^{1}(\Omega)}$$

Next, for the second condition of Lax-Milgram, we want to show that

$$B[u, u] \ge \beta \|u\|_{H^1(\Omega)}^2$$

for some $\beta > 0$. However, we notice that if u is a constant function $u \equiv \lambda \in \mathbb{R}$, then

$$B[u,u] = \int_{\Omega} |D\lambda|^2 dx = 0$$
 but $\|\lambda\|_{H^1(\Omega)} = |\Omega|\lambda > 0$ for $\lambda \neq 0$

This tells us that $H^1(\Omega)$ is too large of a set for the second condition to hold everywhere. Thus, we want to consider a restriction on $H^1(\Omega)$. Keeping in mind that the average of a constant function is itself, we define

$$\tilde{H} = \{ u \in H^1(\Omega) : (u)_{\Omega} = 0 \}$$

equipped with the H^1 -norm. To show that \tilde{H} is also a Hilbert space, we will use the fact that closed subsets of Hilbert spaces are also Hilbert spaces. Indeed, let $(u_n) \subset \tilde{H}$ converge to some u. Then

$$\left| \int_{\Omega} u dx \right| = \left| \int_{\Omega} u - u_n dx + \int_{\Omega} u_n \right|$$

$$= \left| \int_{\Omega} u - u_n dx \right| \qquad \text{(since } (u_n)_{\Omega} = 0)$$

$$\leq \sqrt{|\Omega|} \|u - u_n\|_{L^2(\Omega)}$$

$$\leq \sqrt{|\Omega|} \|u - u_n\|_{H^1(\Omega)}$$

$$\to 0$$

so we must have that

$$\int_{\Omega} u dx = 0$$

or $(u)_{\Omega} = 0$, so $u \in \tilde{H}$. Thus, \tilde{H} is a Hilbert space. Then we may see that

$$B[u, u] = \int_{\Omega} |Du|^2 dx$$

$$= ||Du||^2_{L^2(\Omega)}$$

$$= \frac{1}{2} |Du|^2_{L^2(\Omega)} + \frac{1}{2} |Du|^2_{L^2(\Omega)}$$

$$\geq \frac{1}{2} |Du|^2_{L^2(\Omega)} + C||u||_{L^2(\Omega)}$$
(Poincare's ineq.)
$$\geq \beta ||u||_{H^1(\Omega)}$$

Hence, by Lax-Milgram, we have the existence of a weak solution $\tilde{u} \in \tilde{H}$ such that

$$B[u,v] = \int_{\Omega} fv dx$$
 for all $v \in \tilde{H}$

We now want to extend this to all of $H^1(\Omega)$ so let $v \in H^1(\Omega)$. We know that $v - (v)_{\Omega} \in \tilde{H}$, so

$$B[\tilde{u}, v] = \int_{\Omega} D\tilde{u} \cdot Dv dx$$

$$= \int_{\Omega} D\tilde{u} \cdot D(v - (v)_{\Omega}) dx + \int_{\Omega} D\tilde{u} \cdot D(v)_{\Omega} dx$$

$$= \int_{\Omega} D\tilde{u} \cdot D(v - (v)_{\Omega}) dx$$

$$= f(v - (v)_{\Omega}) dx \qquad (\text{since } (v - (v)_{\Omega}) \in \tilde{H})$$

$$= \int_{\Omega} fv dx - (v)_{\Omega} \int_{\Omega} f dx$$

$$= \int_{\Omega} fv dx \qquad (\text{by hypothesis})$$

$$= (f, v)$$

Evans 6.6.10

Assume Ω is connected. Use (a) energy methods and (b) the maximum principle to show that the only smooth solutions of the Neumann boundary-value problem

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$

86

are $u \equiv C$, for some constant $C \in \mathbb{R}$.

Proof.

(a) Using an energy method, observe that

$$0 = \int_{\Omega} -u\Delta u dx = \int_{\partial\Omega} uDu \cdot \nu dS(x) - \int_{\Omega} -Du \cdot Du dx$$
$$= 0 + \int_{\Omega} |Du|^2 dx \qquad (\text{since } \frac{\partial u}{\partial \nu} = 0)$$
$$= \int_{\Omega} |Du|^2 dx$$

Thus, we have that Du=0 a.e. in Ω . Since Ω is connected, we use Evans 5.10.11 to conclude that u is constant a.e. in Ω which by smoothness of u, implies that u is constant in Ω .

- (b) Suppose u is nonconstant and wlog, assume u > 0 somewhere in $\overline{\Omega}$. Then by the smoothness of u, we know that u attains its maximum at some point $x^0 \in \overline{\Omega}$.
 - If $x^0 \in \Omega$, then since $Lu = -\Delta u = 0$ and Ω is open, bounded and connected, then the strong maximum principle implies that u must actually be constant.
 - If $x^0 \in \partial \Omega$, then since Ω is open and bounded, Ω satisfies the interior ball condition at x^0 . Next, we know that u is smooth up to the boundary, so by Hopf's lemma, we must have that

$$\frac{\partial u}{\partial \nu}(x^0) > 0$$

which contradicts that $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$.

Thus, in all cases, we must have that u is constant.