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1 Important Theory:

Gronwall Inequality (Brauer Thm. 1.4)

� Theorem: Let K be a nonnegative constant and let f, g : [α, β] → R be
continuous nonnegative functions satisfying

f(t) ≤ K +

� t

α

f(s)g(s)ds

for α ≤ t ≤ β. Then

f(t) ≤ K exp

{� t

α

g(s)ds

}
for all t ∈ [α, β].

Proof Outline.

1. Set u(t) := K +
� t

α
f(s)g(s)ds

2. Take u′(t) and use the fact that f(t) ≤ u(t)

3. Force the product rule by multiplying an integrating factor.

4. Integrate from α to t.

5. Move things around and note that f(t) ≤ u(t).

■

First Existence and Uniqueness (Brauer Thm. 1.1)

� Theorem: Let F be a vector function (with n components) defined in a region
D of Rn+1. Let the vectors F and ∂F/∂yk be continuous in D for all k = 1, . . . , n.
Then given a point (t0, η) ∈ D, there exists a unique continuous solution ϕ of
the system

y′ = f(t, y) y(t0) = η

The solution ϕ exists on an interval I containing t0 for which the points (t, ϕ(t)) ∈
D when t ∈ I.

Linear System Existence and Uniqueness (Brauer Thm. 2.1)

� Theorem: If A(t), g(t) are continuous on some interval a ≤ t ≤ b, if a ≤ t0 ≤ b,
and if |η| < ∞, then the system y′ = A(t)y + g(t) has a unique solution ϕ(t)
satisfying ϕ(t0) = η and ϕ exists on a ≤ t ≤ b.

� Note that the interval for which the solution ultimately exists on depends on
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domain in which F (t, y) = A(t)y + g(t) is continuous. If D = dom(F ) is given
by

D = [a, b]× (−∞,∞)

then the existence interval, which proliferates from t0 continues so long as |ϕ(t)| <
∞, i.e. for t ∈ [a, b], the point (t, ϕ(t)) remains in D.

Abel’s Formula (Brauer Thm. 2.3)

� Theorem: If Φ is a solution matrix of

y′ = A(t)y

on I and if t0 ∈ I, then

detΦ(t) = detΦ(t0) exp

{� t

t0

n∑
j=1

ajj(s)ds

}
t ∈ I

Fundamental Matrix Criteria (Brauer Thm. 2.4)

� Definition: A solution matrix on I for y′ = A(t)y whose columns are linearly
independent on I is called a fundamental matrix.

� Theorem: A solution matrix Φ of y′ = A(t)y on an interval I is a fundamental
matrix on I iff detΦ(t) ̸= 0 for all t ∈ I.

Variation of Constants Formula (Brauer Thm. 2.6)

� Theorem: If Φ is a fundamental matrix of y′ = A(t)y on an interval I, then

Ψ(t) = Φ(t)

� t

t0

Φ−1(s)g(s)ds

is the unique solution of
y′ = A(t)y + g(t)

satisfying Φ(t0) = η.

� Using this, we have that any solution to y′ = A(t)y + g(t) can be written as

y(t) = Φh(t) + Ψ(t)

where Φ is as stated above and Φh is the solution to the homogeneous equation
such that the initial conditions agree.
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Fundamental Matrix for Constant Coefficient Linear System (Brauer Thm. 2.7)

� Theorem: The matrix
Φ(t) = eAt

is the fundamental matrix of y′ = Ay with Φ(0) = In on −∞ < t <∞.

� If A is a constant coefficient matrix, then the solution to the system{
y′ = Ay + g(t)

y(0) = η

is given by

y(t) = eAtη +

� t

0

eA(t−s)g(s)ds

Eigenvalue bound on Fundamental Matrix (Brauer Thm. 2.10)

� Theorem: If λ1, λ2, . . . , λk are the distinct eigenvalues of A, where λj has
multiplicty nj and n1 + · · ·+ nk = n and if p is any number larger than the real
part of λ1, . . . , λk, i.e.

p > max
j=1,...,k

ℜ(λj)

then there exists a constant K > 0 such that

| exp{tA}| ≤ K exp{pt} t ∈ [0,∞)

Existence Theorem (Brauer Thm. 3.1)

� The system we will situate ourselves in is

y′ = f(t, y) y(t0) = y0

with f, ∂f/∂y continuous on the rectangle R given by

R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}

� Lemma: Define α to be the smaller of the positive numbers a, b/∥f∥∞. Then
the successive approximations ϕn given by{

ϕ0(t) = y0

ϕn+1(t) = y0 +
� t

t0
f(s, ϕn(s))ds n = 1, 2, . . .

is well defined on the interval I = {t : |t− t0| ≤ α} and on this interval

|ϕn(t)− y0| ≤ ∥f∥∞|t− t0| ≤ b n = 1, 2, . . .
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� Theorem: Suppose f, ∂f/∂y are continuous on the closed rectangle R. Then
the successive approximations ϕn, converge uniformly on the interval I to a
solution ϕ of the above system.

Poincare Diagram: Phase Portrait Classification

Poincaré Diagram: Classification of Phase Portaits

TrA

detA
∆=0

∆=0:
detA= 1

4
(TrA)2

saddle

centeruniform
motion

sink source

line of stable fixed points line of unstable fixed points

spiral sink spiral source
degenerate sink degenerate source

Bifurcation Normal Forms (Strogatz Ch. 3)

Each type of bifurcation has a prototypical normal form.

1. (Saddle-node)
x′ = r + x2

2. (Transcritical)
x′ = rx− x2

3. (Supercritical pitchfork)
x′ = rx− x3

4. (Subcritical pitchfork)
x′ = rx+ x3

9



Fundamental Solution of Laplace’s Equation (Evans Sec. 2.2.1)

� Definition: The function

Φ(x) =

{
− 1

2π
log |x| (n = 2)
1

n(n−2)α(n)
1

|x|n−2 (n ≥ 3)

defined for x ∈ Rn, x ̸= 0, is the fundamental solution of Laplace’s equation,
∆u = 0.

� We also have the following estimates on the gradient and Hessian of Φ,

|DΦ(x)| ≤ C

|x|n−1
, |∆2Φ(x)| ≤ C

|x|n
(x ̸= 0)

for some C > 0.

Mean Value Formula for Harmonic Functions (Evans. Thm 2.2.2)

� Theorem: If u ∈ C2(Ω) is harmonic, then

u(x) =

 
∂Br(x)

u(y)dS(y) =

 
Br(x)

u(y)dS(y)

for each ball Br(x) ⊂ Ω.

Proof Outline.

1. Define a function ϕ(r) =
�
∂Br(x)

u(y)dS(y).

2. Use a change of coordinates so that we’re integrating over ∂Ω. This is
y 7→ x+ rz (dS(z)) and a factor of rn−1 appears as well so that we preserve
the average.

3. Take ϕ′(r) so that a z pops out and convert back to y so that the z becomes
y−x
r

which is exactly the unit normal vector.

4. Use Green’s theorem so convert the integral to a useful formula, ϕ′(r) =
r
n

�
Br(x)

∆u(y)dy and use harmonicity.

5. Thus, ϕ is constant so we can take r → 0 to get u(x).

6. For
�
Br(x)

, use polar coordinates to pull out
�
∂Br(x)

and use the mean value

formula over the surface.

■

� Theorem: If u ∈ C2(Ω) satisfies

u(x) =

 
∂Br(x)

u(y)dS(y)

for each ball Br(x) ⊂ Ω, then u is harmonic.
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Proof Outline.

1. Suppose ∆u(x0) > 0.

2. Define ϕ(r) =
�
∂Br(x0)

u(y)dS(y), then we still get ϕ′(r) = r
n

�
Br(x0)

∆u(y)dy.

3. The hypothesis gives us that ϕ(r) = u(x0) for every r, so ϕ is constant
which leads to the contradiction.

■

Strong Maximum Principle for Laplace’s Equation (Evans Thm. 2.2.4)

� Theorem: Suppose u ∈ C2(Ω) ∩ C(Ω) is harmonic within Ω. Then,

1. max
Ω

u = max
∂Ω

u.

2. If Ω is connected and there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u,

then u is constant in Ω.

Proof Outline.

1. Proving (2) first, if x0 ∈ Ω is maximal, then draw the ball Bdist(x0,∂Ω)(x0)
and use the mean value formula.

2. Thus, Bdist(x0,∂Ω)(x0) ⊂ u−1({u(x0)}) which shows openness of
u−1({u(x0)}). Closedness of u−1({u(x0)}) follows from {u(x0)} being a
singleton, hence closed (preimage of closed is closed). Thus, it must be the
entire set Ω.

3. Then use connectedness and that u is continuous to ∂Ω.

4. To show (1), just use the same assumption and we’ll get u constant on an
open component of Ω. Then take u continuous to ∂Ω for the contradiction.

■

Uniqueness of Solution to Poisson’s Equation (Evans Thm. 2.2.5)

� Theorem: Let g ∈ C(∂Ω), f ∈ C(Ω). Then there exists at most one solution
u ∈ C2(Ω) ∩ C(Ω) of Poisson’s equation{

−∆u = f in Ω

u = g on ∂Ω
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Smoothness of Harmonic Functions (Evans Thm. 2.2.6)

� Theorem: If u ∈ C(Ω) satisfies the mean value property for each ball Br(x) ⊆
Ω, then

u ∈ C∞(Ω)

Proof Outline.

1. Let η be the standard mollifier which we note is radial and define ηϵ(x) =
1
ϵn
η
(
x
ϵ

)
which has supp(ηϵ) ⊂ Bϵ(0).

2. Set uϵ = ηϵ ∗u in Ωϵ = {x ∈ Ω : dist(x, ∂Ω) > ϵ} and we know uϵ is smooth.

3. Calculate using the definition of ηϵ, polar coordinates, and the mean value
property to get that uϵ(x) = u(x) in Ωϵ for all ϵ.

4. Conclude that u ∈ C∞(Ω).

■

Harnack’s Inequality for Harmonic Functions (Evans Thm. 2.2.11)

� Theorem: For each connected open set V with V ⊂⊂ Ω, there exists a positive
constant C, depending only on V , such that

sup
V
u ≤ C inf

V
u

for all nonnegative harmonic functions u in Ω.

Proof Outline.

1. Let r := 1
4
dist(V, ∂Ω) and choose x, y ∈ V with |x− y| < r

2. Use mean value formula over B2r(x), u nonnegative, and Br(y) ⊂ B2r(x) to
calculate u(x) ≥ 1

2n
u(y).

3. Use V connected, V compact to cover V be a finite chain of overlapping
balls of radius r/2.

4. Induct over the number of balls and repeat (2) to get u(x) ≥ 1
2n(N+1)u(y)

for

any x, y ∈ V .

■
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Poisson’s Formula for the Ball (Evans Thm. 2.2.15)

� Theorem: If u ∈ C2(Ω) solves Poisson’s equation,{
−∆u = f in Ω

u = g on ∂Ω

for f ∈ C(Ω), g ∈ C(∂Ω), then

u(x) = −
�
∂Ω

g(y)
∂G

∂ν
(x, y)dS(y) +

�
Ω

f(y)G(x, y)dy (x ∈ Ω)

� Definition: Green’s function for the unit ball is

G(x, y) = Φ(y − x)− Φ(|x|(y − x̃)) (x, y ∈ B1(0), x ̸= y)

where x̃ = x
|x|2 .

� Theorem: Assume g ∈ C(∂Br(0)) and define u by

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|x− y|n
dS(y) +

�
Br(0)

f(y)G(x, y)dy︸ ︷︷ ︸
Inhomogeneous term

then

– u ∈ C∞(Br(0)).

– ∆u = 0 in Br(0)

– lim
x→x0

x∈Br(0)

u(x) = g(x0) for each point x0 ∈ ∂Br(0).

Energy Method for Uniqueness of Poisson’s (Evans Thm. 2.2.16)

� Theorem: There exists at most one solution u ∈ C2(Ω) of{
−∆u = f in Ω

u = g on ∂Ω

Proof Outline.

1. Consider two solutions u1, u2 satisfying the above equation and take their
difference w = u1 − u2.

2. We then see ∆w = 0 and w = 0 on ∂Ω, so integrate w∆w by parts to find
|Dw| = 0

13



3. Hence w = 0 in Ω.

■

Dirichlet’s Principle (Evans Thm. 2.2.17)

� Theorem: Assume u ∈ C2(Ω) solves{
−∆u = f in Ω

u = g on ∂Ω

Then,

I[u] = min
w∈A

I[w] where

{
I[w] :=

�
Ω

1
2
|Dw|2 − wfdy

A := {w ∈ C2(Ω) : w = g on ∂Ω}

Conversely, if u ∈ A, satisfies the above minimization problem, then u solves the
Poisson equation above.

Proof Outline.

1. (Forward direction) First notice that 0 =
�
Ω
(−∆u − f)(u − w)dy since

−∆u− f = 0.

2. Distribute and integrate −∆u(u−w) by parts. Moving things around gives�
Ω
|Du|2 − fudy =

�
Ω
Du ·Dw − fw.

3. Using the Cauchy Schwarz and Cauchy’s inequality, we know |Du ·Dw| ≤
|Du||Dw| ≤ 1

2
|Du|2 + 1

2
|Dw|2

4. Use (2) on
�
Ω
Du · Dw − fw to find I[w] and move things around to get

I[u] ≤ I[w]

5. (Backward direction) Consider a small perturbation i(ϵ) := I[u+ ϵv] where
ϵ ∈ R and v ∈ C∞

c (Ω).

6. Note that i′(0) = 0 since ϵ = 0 is minimal

7. Expand and distribute i(ϵ), take d
dϵ

of i(ϵ) and set ϵ = 0.

8. Integrate by parts to find 0 =
�
Ω
(−∆u− f)vdy

9. Since this holds for every v ∈ C∞
c (Ω), then −∆− f = 0.

■
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Fundamental Solution of the Heat Equation (Evans Sec. 2.3.1)

� Definition: The function

Φ(x, t) :=

{
1

(4πt)n/2 e
− |x|2

4t (x ∈ Rn, t > 0)

0 (x ∈ Rn, t < 0)

is called the fundamental solution of the heat equation, ut −∆u = 0.

� Lemma: (Integral of fundamental solution). For each time t > 0,

�
Rn

Φ(x, t)dx = 1.

Note the choice of normalizing constant makes this possible.

Inhomogeneous Initial Value Heat Equation (Evans Thm. 2.3.2)

� Theorem: Let g ∈ C(Rn) ∩ L∞(Rn), and define u by

u(x, t) =

�
Rn

Φ(x− y, t)g(y)dy +

� t

0

�
Rn

Φ(x− y, t− s)f(y, s)dyds

=
1

(4πt)n/2

�
Rn

e−
|x−y|2

4t g(y)dy +

� t

0

1

(4π(t− s))n/2

�
Rn

e−
|x−y|2
4(t−s) f(y, s)dyds

for x ∈ Rn, t > 0, then

1. u ∈ C2
1(Rn × (0,∞)).

2. ut(x, t)−∆u(x, t) = f(x, t) for x ∈ Rn, t > 0.

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = g(x0) for each x0 ∈ Rn.
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Mean Value Formula for the Heat Equation (Evans Thm. 2.3.3)

� Definition: We define the parabolic cylinder

ΩT := Ω× (0, T ]

and the parabolic boundary of ΩT is

ΓT := ΩT − ΩT

Be careful to note that ΩT contains the interior and the top face while ΓT com-
prises the bottom face and the vertical sides.

� Definition: For fixed x ∈ Rn, t ∈ R and r > 0, we define

E(x, t; r) :=

{
(y, s) ∈ Rn+1 : s ≤ t, Φ(x− y, t− s) ≥ 1

rn

}
Note that the ”center” (x, t) is located at the center of the top of the heat ball.

� Theorem: Let u ∈ C2
1(ΩT ) solve the heat equation. then

u(x, t) =
1

4rn

�
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds

for each E(x, t; r) ⊂ ΩT .

Strong Maximum Principle for Heat Equation (Evans Thm. 2.3.4)

� Theorem: Assume U ∈ C2
1(ΩT )∩C(ΩT ) solves the heat equation in ΩT . Then

max
ΩT

u = max
ΓT

u

Furthermore, if Ω is connected and there exists a point (x0, t0) ∈ ΩT such that

u(x0, t0) = max
ΩT

u

then u is constant in Ωt0 .

Uniqueness of Solution to Heat Equation (Evans Thm. 2.3.5)

� Theorem: Let g ∈ C(ΓT ), f ∈ C(ΩT ). Then there exists at most one solution

16



u ∈ C2
1(ΩT ) ∩ C(ΩT ) of the initial/boundary-value problem{

ut −∆u = f in ΩT

u = g on ΓT

Smoothness of Solution to the Heat Equation (Evans Thm. 2.3.8)

� Theorem: Suppose u ∈ C2
1(ΩT ) solves the heat equation in ΩT . Then u ∈

C∞(ΩT ).

Energy Method for Uniqueness of Heat Equation (Evans Thm. 2.3.10)

� Theorem: (Forward uniqueness) There exists only one solution u ∈ C2
1(ΩT ) of

the initial/boundary-value problem.{
ut −∆u = f in ΩT

u = g on ΓT

Proof. Let u1, u2 be solutions to the heat equation and define w := u1 − u2 so
that w solves {

wt −∆w = 0 in ΩT

w = 0 on ΓT

Set

E(t) =

�
ΩT

1

2
w2(x, t)dx 0 ≤ t ≤ T

Taking ∂t, we have

E ′(t) =

�
ΩT

w(x, t)wt(x, t)dx

=

�
ΩT

w(x, t)∆w(x, t)dx (by the PDE)

= −
�
ΩT

|Dw|2dx (int. by parts)

≤ 0

Therefore, E(t) ≤ E(0) = 0 since w = 0 on ΓT . Thus, u1 − u2 = w = 0 in
ΩT .

� Theorem: (Backwards uniqueness) Suppose u1, u2 ∈ C2(ΩT ) solve{
ut −∆u = 0 in ΩT

u = g on ∂Ω× [0, T ]

If u1(x, T ) = u2(x, T ) for x ∈ Ω, then u1 = u2 in ΩT .

17



Proof. Let u1, u2 be solutions to the heat equation and define w := u1 − u2 so
that w solves the homogeneous heat equation with zero boundary condition on
ΓT . Set

E(t) =

�
ΩT

1

2
w2(x, t)dx 0 ≤ t ≤ T

and take ∂t as well as ∂
2
t .

E ′(t) = −
�
ΩT

|Dw|2dx

E ′′(t) = −2

�
ΩT

Dw · (Dw)tdx

= 2

�
ΩT

∆wwtdx (int. by parts)

= 2

�
ΩT

(∆w)2dx (By the PDE)

Now observe that

E ′(t) = −
�
ΩT

|Dw|2dx

= −
�
ΩT

w∆wdx (int. by parts)

≤ ∥w∥L2(ΩT )∥∆w∥L2(ΩT )

Thus,

[E ′(t)]2 ≤ 1

2
2

�
ΩT

w2dx

�
ΩT

(∆w)2dx = E(t)E ′′(t)

Now if E ≡ 0 for all t ∈ [0, T ], then we are done, so assume otherwise so that there
exists an interval [t1, t2] ⊂ [0, T ] where E(t) > 0 for t ∈ [t1, t2) and E(t2) = 0.
Such a t2 exists since we can push t2 to T and we know that w(x, T ) = 0 by
hypothesis. Now define

f(t) := log(E(t)) t ∈ [t1, t2)

and we see that

f ′(t) =
E ′(t)

E(t)

f ′′(t) =
E(t)E ′′(t)− [E ′(t)]2

[E(t)]2

=
E ′′(t)

E(t)
− [E ′(t)]2

[E(t)]2

≥ 0 (since [E ′]2 ≤ EE ′′)

18



Thus, f is convex, so for λ ∈ (0, 1) and t ∈ (t1, t2)

f(λt1 + (1− λ)t) ≤ λf(t1) + (1− λ)f(t)

and exponentiating gives

0 ≤ E(λt1 + (1− λ)t) ≤ Eλ(t1)E
1−λ(t)

so letting t→ t2, we have that

0 ≤ E(λt1 + (1− λ)t2) ≤ Eλ(t1)E
1−λ(t2) = 0 for all λ ∈ (0, 1)

Thus, E ≡ 0 on [t1, t2], a contradiction. Hence E ≡ 0 for t ∈ [0, T ], so w = 0 in
ΩT .

d’Alembert’s Formula (Evans Thm. 2.4.1)

� Theorem: (Solution of wave equation, n = 1) Assume g ∈ C2(R), h ∈ C1(R),
and define u by d’Alembert’s formula,

u(x, t) =
1

2
[g(x+ t) + g(x− t)] +

1

2

� x+t

x−t

h(y)dy x ∈ R, t ≥ 0

then

1. u ∈ C2(R× [0,∞)

2. utt − uxx = 0 in R× [0,∞).

3. lim
(x,t)→(x0,0)

t>0

u(x, t) = g(x0) and lim
(x,t)→(x0,0)

t>0

ut(x, t) = h(x0) for each point x0 ∈

R.

Uniqueness for Wave Equation (Evans Thm. 2.4.5)

� Theorem: Let Ω ⊂ Rn be a bounded, open set with a smooth boundary ∂Ω,
and as usual, set ΩT = Ω × (0, T ], ΓT = ΩT − ΩT , where T > 0. Then there
exists at most one solution u ∈ C2(ΩT ), solving

utt −∆u = f in ΩT

u = g on ΓT

ut = h on Ω× {t = 0}

Proof Outline. 1. Let w = u1 − u2 where u1, u2 are solutions

2. Define E(t) := 1
2

�
Ω
w2

t (x, t) + |Dw(x, t)|2dx for 0 ≤ t ≤ T .

3. Take E ′(t) and use the PDE to get E ′(t) = 0 for all 0 ≤ t ≤ T .

■
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Wave Equation Finite Propagation Speed (Evans Thm. 2.4.6)

� Theorem: If u ≡ ut ≡ 0 on Bt0(x0) × {t = 0}, then u ≡ 0 within the cone
K(x0, t0), where

K(x0, t0) := {(x, t) := 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

Proof. Define the energy function,

E(t) :=
1

2

�
Bt0−t(x0)

u2t (x, t) + |Du|2(x, t)dx

Then,

E ′(t) =

�
Bt0−t(x0)

ututt +Du ·Dutdx−
1

2

�
∂Bt0−t(x0)

u2t + |Du|2dS(x)

(polar coordinates (derivative))

=

�
Bt0−t(x0)

ututt − ut∆udx

+

�
∂Bt0−t(x0)

Du · ηutdS(x)−
1

2

�
∂Bt0−t(x0)

u2t + |Du|2dS(x)

= 0 +

�
∂Bt0−t(x0)

Du · ηutdS(x)−
1

2

�
∂Bt0−t(x0)

u2t + |Du|2dS(x)

(by the PDE)

≤ 1

2

�
∂Bt0−t(x0)

|Du|2 + u2tdS(x)−
1

2

�
∂Bt0−t(x0)

u2t + |Du|2dS(x)

(Young’s ineq.)

= 0

Thus, E ′(t) ≤ 0. Since u ≡ 0 on Bt0(x0) × {t = 0} then Du = 0 on Bt0(x0), so
we must have that E(t) ≤ E(0) = 0 for 0 ≤ t ≤ t0. Thus, u(x, t) = u(x0, t0) = 0
for all (x, t) ∈ K(x0, t0).

Holder Space (Evans Thm. 5.2.1)

� If u : Ω → R. Then we say u is Holder continuous with exponent γ if

|u(x)− u(y)| ≤ C|x− y|γ (x, y ∈ Ω), γ ∈ (0, 1], C ≥ 0

Note if γ > 1, then u will be constant.

� Definition: If u : Ω → R, u ∈ Cb(Ω), we write

∥u∥C(Ω) := sup
x∈Ω

|u(x)|
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� Definition: The γth-Holder seminorm of u : Ω → R is

[u]C0,γ(Ω) := sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|γ

� Definition: So the γth-Holder norm of u : Ω → R is

∥u∥C0,γ(Ω) := ∥u∥C(Ω) + [u]C0,γ(Ω)

� Definition: The Holder space Ck,γ(Ω) consists of all functions u ∈ Ck(Ω) for
which

∥u∥Ck,γ(Ω) :=
∑
|α|≤k

∥Dαu∥C(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω) <∞ (α multiindex)

i.e. the space of functions that are up to k-times continuously differentiable and
whose kth derivatives are bounded and Holder continuous with exponent γ

� Theorem: Holder space, Ck,γ(Ω) is a Banach space.

Weak Derivative (Evans Sec. 5.2.1)

� Definition: Suppose u, v ∈ L1
loc(Ω) and α is a multiindex. We say that v is

the αth-weak partial derivative of u, denoted

Dαu = v

provided

�
Ω

uDαϕdy = (−1)|α|
�
Ω

vϕdy for all test functions ϕ ∈ C∞
c (Ω)

� Lemma: If it exists, then the αth-weak derivative of u is uniquely defined up to
a set of measure zero.

Sobolev Space (Evans Sec. 5.2.2)

� Definition: The Sobolev space, denoted W k,p(Ω), consists of all locally L1(Ω)
functions u : Ω → R such that for each multiindex α with |α| ≤ k, Dαu exists
in the weak sense and belongs to Lp(Ω).

� If p = 2, we usually write

Hk(Ω) = W k,2(Ω) k = 0, 1, 2, . . .
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and the letter H is used since Hk(Ω) is a Hilbert space. Also, note that H0(Ω) =
L2(Ω).

� Definition: If u ∈ W k,p(Ω), we define the Sobolev norm by

∥u∥Wk,p(Ω) :=


(∑

|α|≤k

�
Ω
|Dαu|pdx

)1/p
1 ≤ p <∞∑

|α|≤k ∥Dαu∥L∞(Ω) p = ∞

� Definition: We denote by W k,p
0 (Ω), the closure of C∞

c (Ω) inW k,p(Ω). (i.e. the
limit points of C∞

c (Ω) using the Sobolev metric.)

� Theorem: For each k =∈ N and 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) is a
Banach space.

Elementary Properties of Weak Derivatives (Evans Thm. 5.2.1)

� Theorem: Assume u, v ∈ W k,p(Ω), |α| ≤ k. Then,

(i) Dαu ∈ W k−|α|,p(Ω) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all α, β with
|α|+ |β| ≤ k.

(ii) For each λ ∈ R, λu + v ∈ W k,p(Ω) and Dα(λu + v) = λDαu + Dαv. i.e.
weak derivatives are linear.

(iii) If V is an open subset of Ω, then u ∈ W k,p(V ).

(iv) If ζ ∈ C∞
c (Ω), then ζu ∈ W k,p(Ω) and

Dα(ζu) =
∑
β≤α

(
α

β

)
DβζDα−βu (Leibniz formula)

where
(
α
β

)
= α!

β!(α−β)!
where α! =

∏|α|
i=1 αi!

Approximations of Sobolev functions (Evans Sec. 5.3)

� Theorem: (Local Approximation) Assume u ∈ W k,p(Ω) for some 1 ≤ p < ∞,
and set

uϵ = ηϵ ∗ u in Ωϵ

Then,

– uϵ ∈ C∞(Ωϵ) for each ϵ > 0

– uϵ → u a.e. in Ωϵ.

– uϵ → u in W k,p
loc (Ω) as ϵ→ 0.
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� Theorem: (Global Approximation) Assume Ω is bounded, and suppose that
u ∈ W k,p(Ω) for some 1 ≤ p < ∞. Then there exists functions um ∈ C∞(Ω) ∩
W k,p(Ω) such that

um → u in W k,p(Ω)

If we further have that ∂Ω is C1, then we may take um ∈ C∞(Ω).

Extensions (Evans Sec. 5.4)

� Theorem: (Extension theorem) Assume Ω is bounded and ∂Ω is C1. Select
a bounded open set V such that Ω ⊂⊂ V . Then there exists a bounded linear
operator

E : W 1,p(Ω) → W 1,p(Rn)

such that for each u ∈ W 1,p(Ω).

– Eu = u a.e. in Ω

– Eu has support (i.e. is nonzero) within V

– ∥Eu∥W 1,p(Rn) ≤ C∥u∥W 1,p(Ω) where C depends only on p,Ω, V

Traces (Evans Sec. 5.5)

� Theorem: Assume Ω is bounded and ∂Ω is C1. Then there exists a bounded
linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that

– Tu = u
∣∣
∂Ω

if u ∈ W 1,p(Ω) ∩ C(Ω).
– ∥Tu∥Lp(Ω) ≤ C∥u∥W 1,p(Ω).

� Theorem: Assume Ω is bounded and ∂Ω is C1. Suppose further that u ∈
W 1,p(Ω). Then,

u ∈ W 1,p
0 (Ω) iff Tu = 0 on ∂Ω

Sobolev Inequalities (Evans Sec. 5.6)

� Definition: If 1 ≤ p < n (n is our ambient dimension), the Sobolev conjugate
of p is

p∗ :=
np

n− p

Note that
1

p∗
=

1

p
− 1

n
, p∗ > p

� Theorem: (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 ≤ p < n.
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There exists a constant C, depending only on n and p, such that

∥u∥Lp∗ (Rn) ≤ C∥Du∥Lp(Rn) for all u ∈ C1
c (Rn)

� Theorem: (Estimates for W 1,p(Ω), 1 ≤ p < n) Let Ω be an open, bounded
subset of Rn with ∂Ω C1. Assume 1 ≤ p < n and u ∈ W 1,p(Ω). Then u ∈ Lp∗(Ω)
with

∥u∥Lp∗ (Ω) ≤ C∥u∥W 1,p(Ω)

where C is a constant only depending on n, p,Ω.

� Theorem: (Estimates for W 1,p
0 (Ω), 1 ≤ p < n) Assume Ω is a bounded open

subset of Rn. Suppose u ∈ W 1,p
0 (Ω) for some 1 ≤ p < n. Then, we have the

estimate
∥u∥Lq(Ω) ≤ C∥Du∥Lp(Ω)

for each q ∈ [1, p∗], the constant C depending only on p, q, n,Ω.

� Theorem: (Morrey’s inequality) Assume n < p ≤ ∞. Then there exists a
constant C, depending only on p and n, such that

∥u∥C0,γ(Rn) ≤ C∥u∥W 1,p(Rn)

for all u ∈ C1(Rn), where γ := 1− n/p.

� Theorem: (Estimates forW 1,p, n < p ≤ ∞) Let Ω be a bounded, open, subset
of Rn, and suppose ∂Ω is C1. Assume n < p ≤ ∞ and u ∈ W 1,p(Ω). Then u has
a version u∗ ∈ C0,γ(Ω), for γ = 1− n

p
, with the estimate

∥u∗∥C0,γ(Ω) ≤ C∥u∥W 1,p(Ω)

The constant C depends only on p, n,Ω.

This theorem essentially allows us to replace a Sobolev function, u ∈ W 1,p with
p > n with its Holder-continuous counterpart.

Sobolev Embeddings (Compactness) (Evans Sec. 5.7)

� Definition: Let X, Y be Banach spaces, X ⊂ Y . We say that X is compactly
embedded in Y , denoted

X ⊂⊂ Y

provided

– ∥u∥Y ≤ C∥u∥X(u ∈ X) for some constant C.

– Each bounded sequence (uk)
∞
k=1 in X is precompact in Y , i.e. boundedness

in X implies a convergent subsequence to a limit in Y .
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� Theorem: (Rellich-Kondrachov compactness theorem) Assume Ω is a bounded
open subset of Rn and ∂Ω is C1. Suppose 1 ≤ p < n. Then,

W 1,p(Ω) ⊂⊂ Lq(Ω)

for each 1 ≤ q < p∗.

Poincare’s Inequality (Evans Sec. 5.8.1)

� Theorem: (Poincare’s inequality) Let Ω be a bounded, connected, open subset
of Rn, with a C1 boundary ∂Ω. Assume 1 ≤ p ≤ ∞. Then there exists a constant
C, depending only on n, p,Ω, such that

∥u− (u)Ω∥Lp(Ω) ≤ C∥Du∥Lp(Ω)

for each function u ∈ W 1,p(Ω).

Difference Quotients (Evans Sec. 5.8.2)

� Definition: Assume u : Ω → R is in L1
loc(Ω) and V ⊂⊂ Ω. Then the ith-

difference quotient of size h is

Dh
i u(x) =

u(x+ hei)− u(x)

h
(i = 1, . . . , n)

for x ∈ V and h ∈ R with 0 < |h| < dist(V, ∂Ω). We then define the difference
quotient to be the vector

Dhu :=
(
Dh

1u, . . . , D
h
nu
)

� Theorem: (Difference quotients and weak derivatives)

1. Suppose 1 ≤ p <∞ and u ∈ W 1,p(Ω). Then for each V ⊂⊂ Ω

∥Dhu∥Lp(V ) ≤ C∥Du∥Lp(Ω)

for some constant C and all 0 < |h| < 1
2
dist(V, ∂Ω).

2. Assume 1 < p < ∞ and u ∈ Lp(V ). Then u ∈ W 1,p(V ) with ∥Du∥Lp(V ) ≤
C.

Sobolev Dual Space (Evans Sec. 5.9.1)

� Definition: We denote by H−1(Ω), the dual space of H1
0 (Ω). We denote by

⟨·, ·⟩ the pairing between H−1(Ω) and H1
0 (Ω).
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� Definition: If f ∈ H−1(Ω), we define the norm

∥f∥H−1(Ω) := sup
{
⟨f, u⟩ : u ∈ H1

0 (Ω), ∥u∥H1
0 (Ω) ≤ 1

}
� Theorem: (Characterization of H−1) If f ∈ H−1(Ω), then there exists
f 0, f 1, . . . , fn in L2(Ω) such that

⟨f, v⟩ =
�
Ω

f 0v +
n∑

i=1

f ivxi
dx for v ∈ H1

0 (Ω)

and we identify f ∈ H−1(Ω) with f 0 −
∑n

i=1 f
i
xi

Elliptic Equations (Evans Sec. 6.1.1)

� Definition: Our focus is on the boundary-value problem{
Lu = f in Ω

u = 0 on ∂Ω

where Ω is an open bounded subset of Rn and u : Ω → R is the unknown. Here,
f : Ω → R is given and L denotes a second order partial differential operator
having either the form

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj
+

n∑
i=1

bi(x)uxi
+ c(x)u (divergence form)

or

Lu = −
n∑

i,j=1

aij(x)uxixj
+

n∑
i=1

bi(x)uxi
+ c(x)u (nondivergence form)

for given coefficient functions aij, bi, c.

� Definition: We say a partial differential operator L is uniformly elliptic if
there exists a constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for a.e. x ∈ Ω and all ξ ∈ Rn.
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Weak Solution (Evans Sec. 6.1.2)

� Definition: The bilinear form B[·, ·] associated with the divergence form ellip-
tic operator L above is

B[u, v] :=

�
Ω

n∑
i,j=1

aijuxi
vxj

+
n∑

i=1

biuxi
v + cuv dx

for u, v ∈ H1
0 (Ω).

� Definition: We say that u ∈ H1
0 (Ω) is a weak solution of the boundary-value

problem {
Lu = f in Ω

u = 0 on ∂Ω

if
B[u, v] = ⟨f, v⟩

for every v ∈ H1
0 (Ω), where (·, ·) denotes the inner product in L2(Ω).

� Definition: More generally, u ∈ H1
0 (Ω) is a weak solution of the boundary-

value problem {
Lu = f 0 −

∑n
i=1 f

i
xi

in Ω

u = 0 on ∂Ω

if
B[u, v] = ⟨f, v⟩

for all v ∈ H1
0 (Ω) where ⟨·, ·⟩ denotes the pairing between H−1(Ω) and H1

0 (Ω).

Lax Milgram Theorem (Evans Thm. 6.1.1)

� Theorem: Let H be a real Hilbert Space and assume that

B : H ×H → R

is a bilinear mapping, for which there exists constants α, β > 0 such that

1. |B[u, v]| ≤ α∥u∥H∥v∥H for u, v ∈ H.

2. β∥u∥2H ≤ B[u, u] for u ∈ H.

Finally, let f : H → R be a bounded linear functional on H (i.e. in the dual of
H), then there exists a unique element u ∈ H such that

B[u, v] = ⟨f, v⟩

for all v ∈ H.

27



Regularity for Elliptic PDEs

We will assume that Ω ⊂ Rn is bounded and open, u ∈ H1
0 (Ω) is a weak solution of{

Lu = f in Ω

u = 0 on ∂Ω

where L has divergence form

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj
+

n∑
i=1

bi(x)uxi
+ c(x)u

� Theorem: (Interior H2-regularity) Assume

aij ∈ C1(Ω) bi, c ∈ L∞(Ω) i, j = 1, . . . , n

and f ∈ L2(Ω). Then u ∈ H2
loc(Ω) and for each open set V ⊂⊂ Ω, we have the

following estimate.

∥u∥H2(V ) ≤ C
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
� Theorem: (Higher interior regularity) Let m be a nonnegative integer and
assume

aij, bi, c ∈ Cm+1(Ω) i, j = 1, . . . , n

and f ∈ Hm(Ω). Then, u ∈ Hm+2
loc (Ω) and for each V ⊂⊂ Ω, we have the

estimate
∥u∥Hm+2(V ) ≤ C

(
∥f∥Hm(Ω) + ∥u∥L2(Ω)

)
� Theorem: (Infinite differentiability in the interior) Assume

aij, bi, c ∈ C∞(Ω) i, j = 1 . . . , n

and f ∈ C∞(Ω). Then u ∈ C∞.

We actually only needed u ∈ H1(Ω) instead of H1
0 (Ω) in the above theorems.

� Theorem: (Boundary H2-regularity) Assume

aij ∈ C1(Ω), bi, c ∈ L∞(Ω) i, j = 1, . . . , n

Further assume f ∈ L2(Ω) and ∂Ω is C2. Then u ∈ H2(Ω) and we have the
estimate

∥u∥H2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
� Theorem: (Higher boundary regularity) Let m be a nonnegative integer and
assume

aij, bi, c ∈ Cm+1(Ω) i, j = 1, . . . , n

Further assume f ∈ Hm(Ω) and ∂Ω is Cm+2. Then u ∈ Hm+2(Ω) and we have
that estimate

∥u∥Hm+2(Ω) ≤ C
(
∥f∥Hm(Ω) + ∥u∥L2(Ω)

)
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� Theorem: (Infinite differentiability up to the boundary) Assume

aij, bi, c ∈ C∞(Ω) i, j = 1, . . . , n

Further assume that f ∈ C∞(Ω) and ∂Ω is C∞. Then u ∈ C∞(Ω).

Maximum Principle for Elliptic PDEs

� Theorem: (Weak maximum principle) Assume u ∈ C2(Ω) ∩ C(Ω) and c ≡ 0
in Ω.

1. If Lu ≤ 0 in Ω, then
max
Ω

u = max
∂Ω

u

2. If Lu ≥ 0 in Ω, then
min
Ω
u = min

∂Ω
u

� Lemma: (Hopf’s lemma) Assume u ∈ C2(Ω)∩C1(Ω) and c ≡ 0 in Ω. Suppose
further that Lu ≤ 0 in Ω and there exists a point x0 ∈ ∂Ω such that

u(x0) > u(x) for all x ∈ Ω

Assume finally that Ω satisfies the interior ball condition at x0; that is, there
exists an open ball B ⊂ Ω with x0 ∈ ∂B.

Then,
∂u

∂ν
(x0) > 0

where ν is the outward unit normal to B at x0. If c ≥ 0 in Ω, then the same
conclusion above holds, provided

u(x0) ≥ 0

� Theorem: (Strong maximum principle) Assume u ∈ C2(Ω) ∩ C(Ω) and c ≡ 0
in Ω. Suppose also that Ω is connected, open, and bounded. Then,

1. If Lu ≤ 0 in Ω and u attains its maximum over Ω at an interior point, then
u is constant within Ω.

2. If Lu ≥ 0 in Ω and u attains its minimum over Ω at an interior point, then
u is constant within Ω.
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2 Part A

Brauer 1.7.2

Find all continuous nonnegative functions f on 0 ≤ t ≤ 1 such that

f(t) ≤
� t

0

f(s)ds

Proof. Notice that the condition above can be rewritten as

f(t) ≤ 0 +

� t

0

f(s)ds

Thus, by Gronwall’s, f(t) ≤ 0, so only f ≡ 0 satisfies the condition.

Brauer 1.7.3

Let f(t) be a nonnegative function satisfying

f(t) ≤ K1 + ϵ(t− α) +K2

� t

α

f(s)ds

on an interval α ≤ t ≤ β, where ϵ,K1, K2 are given positive constants. Show that

f(t) ≤ K1e
K2(t−α) +

ϵ

K2

(
eK2(t−α) − 1

)

Proof.

1. Let

U(t) = K1 + ϵ(t− α) +K2

� t

α

f(s)ds

so that f(t) ≤ U(t).

2. Next, taking the derivative, we have

U ′(t) = ϵ+K2f(t) ≤ ϵ+K2U(t)

U ′(t)−K2U(t)− ϵ ≤ 0

We’ll force a product rule by multiplying by e−K2(t−α). Note that −K2(t − α) and
−K2t have the same derivative. Thus, we have

e−K2(t−α)U ′(t)−K2e
−K2(t−α)U(t)− ϵe−K2(t−α) ≤ 0

d

dt

[
U(t)e−K2(t−α)

]
− ϵe−K2(t−α) ≤ 0
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3. Using FTC, we’ll integrate over [α, t] to get

U(t)e−K2(t−α) − U(α) +
ϵ

K2

e−K2(t−α) − ϵ

K2

≤ 0

U(t)e−K2(t−α) ≤ U(α)− ϵ

K2

(
e−K2(t−α) − 1

)
U(t) ≤ K1e

K2(t−α) +
ϵ

K2

(
eK2(t−α) − 1

)
and since f(t) ≤ U(t) by hypothesis, we are done.

Gronwall’s Inequality Differential Form

Let v, u be continuous functions on the interval α ≤ t ≤ β. If u is differentiable on
(α, β) and satisfies

u′(t) ≤ v(t)u(t) t ∈ (α, β)

then

u(t) ≤ u(α) exp

{� t

α

v(s)ds

}

Proof. Define

w(t) = exp

{� t

α

v(s)ds

}
so that w(t) > 0 and w(α) = 1. Next, observe that

w′(t) = w(t)v(t) =⇒ v(t) =
w′(t)

w(t)

so by substitution,

u′(t) ≤ u(t)v(t) ≤ u(t)w′(t)

w(t)

w(t)u′(t)− u(t)w′(t) ≤ 0

w(t)u′(t)− u(t)w′(t)

[w(t)]2
≤ 0 (multiply by 1/[w(t)]2 since w > 0)

d

dt

(
u(t)

w(t)

)
≤ 0 (force quotient rule)

Now integrate over [α, t] to get

u(t)

w(t)
− u(α)

w(α)
≤ 0

u(t) ≤ u(α)w(t) = u(α) exp

{� t

α

v(s)ds

}
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Brauer 1.7.4

Find all continuous functions f(t) such that

[f(t)]2 =

� t

0

f(s)ds t ≥ 0

Proof. We first notice that f(0) = 0. Next, let us consider the following cases

1. If f(t0) > 0 for some t0 > 0, then there exists an open ball Br(t0) for which f > 0.
Thus,

f(t) =
√

[f(t)]2 t ∈ Br(t0)

is differentiable on Br(t0) so taking the derivative of our original equality,

2f(t)f ′(t) = f(t) (t ∈ Br(t0))

2f ′(t) = 1 (f(t) > 0)

f(t) =
1

2
t+ c

and c = 0 since f(0) = 0.

2. If f(t0) < 0 for some t0 > 0, then there exists an open ball Br(t0) for which f < 0.
Thus, by a similar process, we again have that

f(t) =
1

2
t

but since f(0) = 0, it is impossible to have f < 0 since t ≥ 0 and our slope is positive.

Thus, since f is continous on [0,∞), we have only the case below:

f(t) =

{
0 t < a
1
2
t t ≥ a

for a ∈ [0,∞].

Brauer 2.1.2

Write the scalar linear equation y(n)+a1(t)y
(n−1)+ · · ·+an−1(t)y

′+any = b as a system
y′ = A(t)y + g(t)

Proof. We first see that y(n)(t) = −a1(t)y(n−1)(t) − · · · − an−1y
′(t) − an(t)y + b(t). Now

defining

y1 = y, y2 = y′ = y′1, y2 = y′′ = y′2, . . . , yn−1 = y(n−2) = y′n−2, yn = y(n−1) = y′n−1
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Then we construct the system,

y′1 = y2

y′2 = y3
...

y′n−1 = yn

y′n = −a1(t)yn−1 − · · · − an−1(t)y2 − an(t)y1 + b(t)

Thus, in matrix notation, we have
y′1
y′2
...

y′n−1

y′n


︸ ︷︷ ︸

y′

=


0
0 In−1
...
0

−an(t) −an−1(t) · · · −a2(t) a1(t) 0


︸ ︷︷ ︸

A(t)


y1
y2
...

yn−1

yn


︸ ︷︷ ︸

y

+


0
0
...
0
b(t)


︸ ︷︷ ︸

g(t)

where In−1 denotes the (n− 1)-dimension identity matrix.

Brauer 2.3.3

Suppose A(t) and g(t) are continuous for −∞ < t <∞ and that

� ∞

−∞
|A(t)|dt <∞ and

� ∞

−∞
|g(t)|dt <∞

Show that the solution ϕ(t) of y′ = A(t)y + g(t) exists for −∞ < t <∞ and compute
a bound for |ϕ(t)| valid for −∞ < t <∞.

Proof. Since A, g are continuous for all t and F (t, y) := A(t)y + g(t) is continuous on

D = {(t, y) : −∞ < t <∞,−∞ < y <∞}

then by theorem 1.1, a unique continuous solution exists for −∞ < t < ∞ so long as
|ϕ(t)| <∞ for all t.

To show ϕ is uniformly bounded, we first apply theorem 2.1 on a finite interval−n ≤ t ≤ n
on which a unique continuous solution ϕ(t) exists with ϕ(t0) = η, |t0| < n, and |η| < ∞.
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Since ϕ is a solution of the linear system, we have

� t

t0

ϕ′(s)ds =

� t

t0

A(s)ϕ(s)ds+

� t

t0

g(s)ds (t0 < t < n)

ϕ(t)− ϕ(t0) =

� t

t0

A(s)ϕ(s)ds+

� t

t0

g(s)ds (FTC)

|ϕ(t)| ≤ |η|+
� t

t0

|A(s)||ϕ(s)|ds+
� t

t0

|g(s)|ds (triangle ineq.)

≤ |η|+
� ∞

−∞
|g(s)|ds+

� t

t0

|A(s)||ϕ(s)|ds (expand)

|ϕ(t)| ≤
(
|η|+

� ∞

−∞
|g(s)|ds

)
exp

{� t

t0

|A(s)|ds
}

(Gronwall)

≤
(
|η|+

� ∞

−∞
|g(s)|ds

)
exp

{� ∞

−∞
|A(s)|ds

}
(expand)

<∞

Thus, ϕ is uniformly bounded for all t ∈ (−∞,∞), so the solution may be extended to all
t ∈ (−∞,∞).

Corollary of Brauer Thm. 2.2

A fundamental solution to the autonomous linear system, X ′(t) = AX, is a nonsingular
matrix-valued function, Φ : R → Md×d, with Φ′(t) = AΦ(t).

(a) Show that Ψ(t) = eAt is a fundamental solution satisfying Ψ(0) = In, the identity
matrix.

(b) Show that X(t) = Φ(t)Φ(0)−1X0 is a solution to the IVP, X ′(t) = AX, X(0) =
X0.

(c) Show that any fundmantal solution is of the form Φ(t) = eAtM , for some non-
singular matrix M .

Proof.

(a) First, we see that

Ψ(0) = eAt

∣∣∣∣
t=0

=
∞∑
j=0

(At)j

j!

∣∣∣∣
t=0

= I + At+
A2t2

2!
+ · · ·

∣∣∣∣
t=0

= I
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Next, we’ll show that Ψ is a solution to the system.

Ψ′(t) =
d

dt

[
I + At+

A2t2

2!
+ · · ·

]
= A+

A2t

1!
+
A3t2

2!
+ · · ·

= A

(
∞∑
j=0

Ajtj

j!

)
= AΨ(t)

Last, since Ψ(0) = In, then detΨ(0) = 1, so by Abel’s formula, detΨ(t) ≥ 1 for all t,
so Ψ must be fundamental.

(b) It is clear that X(0) = X0 and

X ′(t) = Φ′(t)Φ(0)−1X0 = AΦ(t)Φ(0)−1X0 = AX(t)

(c) Let Φ be a fundamental solution of the above system. Then since Ψ(t) = eAt is also a
fundamental solution, then by definition, the columns of Ψ(t) are linearly independent
for each t and thus form a basis for the set of solutions of our system. Let Ψj(t), Φj(t)
denote the jth column of Ψ and Φ respectively. Then there exists constants (cj,k)

n
k=1

such that

Φj(t) =
n∑

k=1

Ψk(t)cj,k =
(
Ψ1(t) · · ·Ψn(t)

)

cj,1
cj,2
...
cj,n

 = Ψ(t)


cj,1
cj,2
...
cj,n


Thus,

Φ(t) = (Φ1(t) · · ·Φn(t)) =

(
n∑

k=1

Ψk(t)c1,k · · ·
n∑

k=1

Ψk(t)cn,k

)

=

Ψ(t)


c1,1
c1,2
...
c1,n

 · · · Ψ(t)


cj,1
cj,2
...
cj,n

 · · · Ψ(t)


cn,1
cn,2
...
cn,n




= Ψ(t)

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n


︸ ︷︷ ︸

C

Now, to show that C is nonsingular, since Φ,Ψ are both fundamental solutions, then
detΦ(t) ̸= 0, and detΨ(t) ̸= 0 for all t, so

det(C) = det(Ψ(0)−1Φ(0)) = det(InΦ(0)) = detΦ(0) ̸= 0
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Brauer 2.7.3

Show that if all eigenvalues have real part negative or zero, if those eigenvalues with
zero real part are simple, and if

�∞
t0

|g(s)|ds <∞, then every solution ϕ(t) of

y′ = Ay + g(t) y(t0) = η

on 0 ≤ t0 ≤ t <∞ is bounded.

Proof. Since A is a constant matrix, then we know by variation of parameters, that the
unique solution ϕ is

ϕ(t) = eA(t−t0)η + eAt

� t

t0

e−Asg(s)ds

Thus,

|ϕ(t)| ≤ |ηe−At0 | · |eAt|+ |e−At0| · |eAt|
� ∞

t0

|g(s)|ds

and by theorem 2.10, since 0 ≥ ℜ{λk} for k = 1, . . . , n where λk are the eigenvalues of A
(λk not necessarily distinct), then there exists a constant K > 0 with

|eAt| ≤ Ke0t = K

Thus,

|ϕ(t)| ≤ K|ηe−At0|
(
1 +

� ∞

t0

|g(s)|ds
)
< M <∞

for some M > 0, so ∥ϕ∥L∞([t0,∞)) <∞.

Brauer 3.1.2

Prove that the initial value problem

y′′ + g(t, y(t)) = 0, y(0) = y0, y′(0) = z0

where g is continuous in some region D containing (0, y0) is equivalent to the integral
equation

y(t) = y0 + z0t−
� t

0

(t− s)g(s, y(s))ds

36



Proof. We first see that the latter implies the former since

y′′(t) = − d2

dt2

� t

0

(t− s)g(s, y(s))ds

= − d

dt

(
d

dt

[
t

� t

0

g(s, y(s))ds−
� t

0

sg(s, y(s))ds

])
= − d

dt

(� t

0

g(s, y(s))ds+ tg(t, y(t))− tg(t, y(t))

)
(FTC)

= −g(t, y(t))

To show that the former implies the latter, we first integrate our IVP.

� s

0

y′′(τ) + g(τ, y(τ))dτ = y′(s)− y′(0) +

� s

0

g(τ, y(τ))dτ

= y′(s)− z0 +

� s

0

g(τ, y(τ))dτ

Then, we integrate again,

� t

0

y′(s)− z0 +

� s

0

g(τ, y(τ))dτds = y(t)− y(0)− z0t+

� t

0

� s

0

g(τ, y(τ))dτds

= y(t)− y0 − z0t+

� t

0

� s

0

g(τ, y(τ))dτds (∗)

Now using integration by parts on the outer integral (and choosing our u to be the inner
integral, v = 1), we have

� t

0

(� s

0

g(τ, y(τ))dτ

)
ds = s

� s

0

g(τ, y(τ))dτ

∣∣∣∣s=t

s=0

−
� t

0

sg(s, y(s))ds

= t

� t

0

g(τ, y(τ))dτ −
� t

0

sg(s, y(s))ds

=

� t

0

(t− s)g(s, y(s))ds (relabeling)

Plugging the above into (∗) gives the desired result.

Brauer 3.1.13

Consider the integral equation

y(t) = eit + α

� ∞

t

sin(t− s)
y(s)

s2
ds α ∈ C
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Define the successive approximations{
ϕ0(t) ≡ 0

ϕn(t) = eit + α
�∞
t

sin(t− s)ϕn−1(s)
s2

ds

(a) Show by induction that

|ϕn(t)− ϕn−1(t)| ≤
|α|n−1

(n− 1)!tn−1
t ∈ [1,∞), n ∈ N

(b) Show that the ϕn converges uniformly on [1,∞) to a continuous function ϕ.

(c) Show that the limit ϕ satisfies the above integral equation.

(d) Show that the limit ϕ satisfies

|ϕ(t)| ≤ e|α|

Proof. (a) For n = 1, we see that

|ϕ1(t)− ϕ0(t)| = |ϕ1(t)| =
∣∣∣∣eit + α

� ∞

t

sin(t− s)
ϕ0(s)

s2
ds

∣∣∣∣ = |eit| = 1 =
|α|1−1

(1− 1)!t1−1

Assuming the result holds for n, then for n+ 1, we have

|ϕn+1(t)− ϕn(t)| ≤ |α|
� ∞

t

|ϕn(s)− ϕn−1(s)|
s2

ds

≤ |α|
� ∞

t

|α|n−1

(n− 1)!sn+1
ds (inductive hypothesis)

=
|α|n

(n− 1)!

� ∞

t

s−n−1ds

=
|α|n

n!tn
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(b) Let ϵ > 0 and consider n,m,N ∈ N with n ≥ m ≥ N .

|ϕn(t)− ϕm(t)| ≤
n−m−1∑
k=0

|ϕn−k(t)− ϕn−1−k(t)|

≤
n−m−1∑
k=0

|α|n−1−k

(n− 1− k)!tn−1−k

≤
n−m−1∑
k=0

|α|n−1−k

(n− 1− k)!
(since t ≥ 1)

≤
n−N−1∑
k=0

|α|n−1−k

(n− 1− k)!

<

n−N−1∑
k=0

1√
2π(n− 1− k)

(
|α|e

n− 1− k

)n−1−k

(Stirling’s approx.)

<
n−N−1∑
k=0

(
|α|e

n− 1− k

)n−1−k

Thus, choosing N > |α|e
ϵ
, we have

|ϕn(t)− ϕm(t)| <
n−1∑
k=N

ϵk <
∞∑

k=N

ϵk =
ϵN

1− ϵ
< ϵ

Thus, (ϕn)
∞
n=1 is uniformly Cauchy, and hence converges uniformly by Cauchy’s cri-

terion to some ϕ. Moreover, since ϕn is continuous for all n, then ϕ must also be
continuous.

(c) To show ϕ satisfies the given integral equation, observe

eit + α

� ∞

t

sin(t− s)
ϕ(s)

s2
ds = eit + α

� ∞

t

sin(t− s) lim
n→∞

ϕn(s)

s2
ds

= lim
n→∞

(
eit + α

� ∞

t

sin(t− s)
ϕn(s)

s2
ds

)
(unif. conv.)

= lim
n→∞

ϕn+1(t)

= ϕ(t)
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(d) Observe that

|ϕn(t)| =

∣∣∣∣∣
n∑

k=1

ϕk(t)− ϕk−1(t)

∣∣∣∣∣
≤

n∑
k=1

|ϕk(t)− ϕk−1(t)|

≤
n∑

k=1

|α|k−1

(k − 1)!tk−1

<

∞∑
k=0

(
|α|
t

)k
k!

= e
|α|
t

≤ e|α|

Tonelli Iteration Scheme

Fix T > 0, n ∈ N and define the Tonelli sequence by

xn(t) =


x0 0 ≤ t ≤ T

n

x0 +

� t−T
n

0

f(s, xn(s))ds
T
n
≤ t ≤ T

for the initial value problem

x′(t) = f(t, x(t)) x(0) = x0

Using this iteration scheme as an alternative to the successive approximations, state
the proper existence theorem and prove it.

Solution: Theorem: Suppose f and ∂f/∂x are continuous on the closed rectangle

R = [−a, a]× [x0 − b, x0 + b]

Then the Tonelli sequence converges uniformly on the interval

I = [0, c] c = min

{
a, T,

b

∥f∥∞

}
to a solution of the initial value problem given above.
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Proof. We’ll first prove that xk is well-defined for all k ∈ N. If c ≤ T
k
, then xk ≡ x0 for

all t ∈ [0, c] and it is clear that (t, x0) ∈ R for t ∈ [0, c]. Now, if c > T
k
and xk fails to

be defined on [0, c], then there exists some t′ ∈
(
T
k
, c
]
such that xk(t

′) ̸∈ [x0 − b, x0 + b], so
|xk(t′)− x0| > b. However, observe that

|xk(t′)− x0| =

∣∣∣∣∣
� t′−T

k

0

f(s, xk(s))ds

∣∣∣∣∣
≤
� t′−T

k

0

|f(s, xk(s))|ds

≤ ∥f∥∞
(
t′ − T

k

)
≤ ∥f∥∞

(
c− T

k

)
≤ b− ∥f∥∞T

k
< b

a contradiction. Thus, xk is well-defined for all t ∈ [0, c] for every k ∈ N

Next, we will show that xk is continuous on [0, c]. Indeed, if t1, t2 ∈
[
T
k
, c
]
with t1 < t2,

then

|xk(t1)− xk(t2)| ≤
� t2−T

k

t1−T
k

|f(s, xk(s))|ds ≤ ∥f∥∞|t2 − t1|

thus showing that xk is continuous on
[
T
k
, c
]
. It is clear that the same estimate holds for all

t1, t2 ∈ [0, c], so xk is continuous on [0, c] for every k ∈ N.

Now, let ϵ > 0 and let n > m ≥ N all be natural numbers with T
N
< c. Since f, ∂f/∂x

are continuous on R compact, then we know that f is Lipschitz and bounded on R. Now let
us observe the following case:

For t ∈ [0, c], if t ≥ T
m
, then we have that

|xn(t)− xm(t)| =

∣∣∣∣∣
� t−T

n

0

f(s, xn(s))ds−
� t− T

m

0

f(s, xm(s))ds

∣∣∣∣∣
≤

∣∣∣∣∣
� t−T

n

t− T
m

f(s, xn(s))ds

∣∣∣∣∣+
∣∣∣∣∣
� t− T

m

0

f(s, xn(s))− f(s, xm(s))ds

∣∣∣∣∣
≤
� t−T

n

t− T
m

|f(s, xn(s))|ds+
� t− T

m

0

|f(s, xn(s))− f(s, xm(s))|ds

≤ ∥f∥∞
(
T

m
− T

n

)
+

� t− T
m

0

D|xn(s)− xm(s)|ds (Lipschitz)
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where D is the Lipschitz constant of f . Next, since |(xn−xm)(t)| is clearly nonnegative and
xn is continuous for all n, then we may apply the Gronwall inequality to get

|xn(t)− xm(t)| ≤ ∥f∥∞
(
T

m
− T

n

)
exp

{� t− T
m

0

Dds

}

= ∥f∥∞
(
T

m
− T

n

)
eD(t−

T
m)

< ∥f∥∞
T

m
eDc

Thus, if we further suppose N > ∥f∥∞TeDc

ϵ
, then for n,m ≥ N , we have

|xn(t)− xm(t)| <
∥f∥∞TeDc

N
< ϵ

We’ll now show that this choice of N also holds to show that (xn) is Cauchy for all
t ∈ [0, c].

Indeed, if t < T
n
, then (xn) is clearly Cauchy. If t ∈

[
T
n
, T
m

]
, then

|xn(t)− xm(t)| =

∣∣∣∣∣
� t−T

n

0

f(s, xn(s))ds

∣∣∣∣∣
≤ ∥f∥∞

(
t− T

n

)
≤ ∥f∥∞

(
T

m
− T

n

)
< ∥f∥∞

T

m

Thus, (xn) is uniformly Cauchy, so it must converge uniformly to some function x. To
show that x satisfies the integral equation

x(t) = x0 +

� t

0

f(s, x(s))ds

we see that

xn(t) = x0 +

� t

0

f(s, xn(s))ds−
� t

t−T
n

f(s, xn(s))ds

and since

lim
n→∞

∣∣∣∣∣
� t

t−T
n

f(s, xn(s))ds

∣∣∣∣∣ ≤ lim
n→∞

∥f∥∞
c

n
= 0
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we must have that

lim
n→∞

xn(t) = x0 + lim
n→∞

� t

0

f(s, xn(s))ds

x(t) = x0 +

� t

0

f(s, x(s))ds (f continuous)

Next, if (tn) is a convergent sequence to t, then

|x(tn)− x(t)| ≤ |x(tn)− xn(tn)|+ |xn(tn)− xn(t)|+ |xn(t)− x(t)|

and each of the three terms above can be made arbitrarily small by continuity of xn and
uniform convergence of xn to x, so x is continuous on [0, c]. Last, it is clear that x(0) = x0
since (xn(0)) is the constant sequence (x0).

Note that we can actually relax the condition that ∂f/∂x is bounded on R. Instead of
using Lipschitz and Gronwall’s to get our result, we need to employ Arzela-Ascoli.

Also, this theorem is sometimes referred to as the Cauchy-Peano (existence) theorem.

To remark about why we don’t have an issue of circularity with the Tonelli sequence
consider the following argument for why xn(t) is well-defined for all t ∈ [0, T ]

xn(t) = x0 t ∈ [0, T/n]

xn(t) = x0 +
� t−T/n

0
f(s, x0)ds =: y1(t) t ∈ [T/n, 2T/n]

xn(t) = x0 +
� t−T/n

0
f(s, xn(s))ds = x0 +

� t−T/n

0
f(s, y1(s))ds =: y2(t) t ∈ [2T/n, 3T/n]

...

xn(t) = x0 +
� t−T/n

0
f(s, yk−1(s))ds =: yk(t) t ∈

[
kT
n
, (k+1)T

n

]
...

At each stage of the above calculation, xn(t) is well-defined (since all terms involved are
ultimately constants), so we can induct on k to show that xn(t) is well defined for all t ∈ [0, T ].

Strogatz 3.4.14

Consider the system x′ = rx+x3−x5, which exhibits a subcritical pitchfork bifurcation.

1. Find algebraic expressions for all the fixed points as r varies.

2. Sketch the vector field as r varies. Be sure to indicate all the fixed points and
their stability.

3. Calculate rs, the parameter at which the nonzero fixed points are born in a
saddle-node bifurcation.
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Solution: Setting x′ = 0, we see that rx+ x3 − x5 = x(r + x2 − x4), so the second term
is quadratic in x2 and x∗ = 0 is always a fixed point.

x2 =
−1±

√
1 + 4r

−2

x = ±

√
−1±

√
1 + 4r

−2

Now, let us consider some cases:

(1) For r < −1
4
, the discriminant will be negative, producing no additional fixed points.

(2) At r = −1
4
, the discriminant is zero, so we gain two additional fixed points, ±

√
1
2
.

(3) For r ∈
(
−1

4
, 0
)
, no imaginary terms arise, so we gain 4 additional fixed points.

(4) For r = 0, −1+
√
1 + 4r = 0, so we have only have 2 additional fixed points since this

zero merges back with the existing x∗ = 0.

(5) Last, for r > 0, we have the 2 fixed points from the previous case.

We note that rs = −1
4
since at that parameter and two fixed points are born, at ±

√
1
2
.

As r increases past rs, each of these fixed points then split into pairs of fixed points.

x

x′

x

x′

Figure 1: Left: r < −1
4
, Right: r = −1

4
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x

x′

x

x′

Figure 2: Left: r ∈
(
−1

4
, 0
)
, Right: r ≥ 0

Strogatz 3.4.10

For the system below, find the values of r at which bifurcations occur and classify
those. Finally, sketch the bifurcation diagram of fixed points r vs x∗.

x′ = rx+
x3

1 + x2

Solution: Solving x′ = 0, we have

x
(
(r + 1)x2 + r

)
= 0

So we have a constant fixed point x∗ = 0. Examining the other term, we have

x∗2 =
−r
r + 1

r ̸= −1

In order to have fixed points, we require the right side to be nonnegative, so let us consider
cases for r:

1. If r > −1, then r + 1 > 0, so for −r
r+1

≥ 0, we have r ≤ 0. Thus, the valid interval
which produces fixed points is r ∈ (−1, 0] with fixed points

x∗ = ±
√

−r
r + 1

2. If r < −1, then −r > 0 and r + 1 < 0, so their quotient is negative so no additional
fixed points come from this case.
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Using the above information about the fixed points, we see that at rp = 0, represents a
pitchfork bifurcation since the split that happens occurs to an existing bifurcation point.
In order to see which pitchfork bifurcation occurs, we will check the stability of x∗ = 0 for
values of r > 0. Starting with the left of x∗ = 0, for r > 0, we have

x′
∣∣∣∣
x<0

= rx+
x3

1 + x2

∣∣∣∣
x<0

< 0

so x∗ = 0 must be unstable since points on the left are moving away from it until r = −1, at
which the two branches disappear. Thus, we must have a subcritical pitchfork since x∗ = 0
will switch from unstable to stable at rp = 0

r

x∗

Figure 3: Bifurcation Diagram
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3 Part B

Evans 2.5.1

Write down an explicit formula for a function u solving the initial value problem{
ut + b ·Du+ cu = 0 Rn × (0,∞)

u = g Rn × {t = 0}

Solution: Given the observation

∂

∂t
[ectu] = ect(cu+ ut)

we multiply our IVP by ect and letting v = ectu, we have{
vt + b ·Dv = 0 Rn × (0,∞)

v = ectg Rn × {t = 0}

Thus, using our solution to the transport problem, we have that

v(x, t) = g(x− tb) ⇔ u(x, t) = e−ctg(x− tb)

Evans 2.5.2

Prove that Laplace’s equation ∆u = 0 is rotation invariant; that is, if O ∈ Mn×n is an
orthogonal matrix and we define

v(x) := u(Ox)

then ∆v = 0.

Proof. Let O = (aij)
n
i,j=1. Then

Ox =

(
n∑

i=1

ajixi

)n

j=1

so we’ll denote yj =
∑n

i=1 ajixi so that u has the form

u = u(y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))
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Then taking the partial w.r.t. xk, we use the total derivative:

∂v

∂xk
=

n∑
j=1

∂u

∂yj

∂yj
∂xk

=
n∑

j=1

∂u

∂yj
ajk

∂2v

∂xk2
=

∂

∂xk

n∑
j=1

∂u

∂yj
ajk

=
n∑

j=1

ajk

n∑
i=1

∂2u

∂yj∂yi

∂yi
∂xk

=
n∑

j=1

ajk

n∑
i=1

∂2u

∂yj∂yi
aik

∆v =
n∑

k=1

∂2v

∂x2k
=

n∑
k=1

n∑
j=1

ajk

n∑
i=1

∂2u

∂yj∂yi
aik

=
n∑

j,i=1

∂2u

∂yj∂yi

n∑
k=1

ajk(aki)
T

By orthogonality, we know that
∑n

k=1 ajk(aki)
T = 1 iff j = k and it is zero otherwise. Thus,

∆v =
n∑

j=1

∂2u

∂yj2
= ∆u = 0

Note that polar coordinates are defined by x 7→ ry where r = |x| and y ∈ ∂B1(0)

Mean Value Theorem for Laplace’s equation

If u ∈ C2(Ω) is harmonic, then

u(x) =

 
∂Br(x)

u(y)dS(y) =

 
Br(x)

u(y)dy
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Proof. Begin by defining

ϕ(r) : =

 
∂Br(x)

u(y)dS(y)

=
1

nα(n)rn−1

�
∂Br(x)

u(y)dS(y)

=
1

nα(n)rn−1

�
∂B1(0)

u(x+ rz)rn−1dS(z) (Change of variables (Polar))

=
1

nα(n)

�
∂B1(0)

u(x+ rz)dS(z)

=

 
∂B1(0)

u(x+ rz)dS(z)

Next, taking the derivative with respect to r,

ϕ′(r) =

 
∂B1(0)

Du(x+ rz)zdS(z)

=

 
∂Br(x)

Du(y)
y − x

r
dS(y) (change variables back to original)

=

 
∂Br(x)

∂u

∂ν
dS(y) (Du(y)y−x

r
is the unit normal)

=
r

n

 
Br(x)

∆u(y)dy (Gauss-Green Theorem)

= 0

Thus, ϕ is constant in r, so�
∂Br(x)

u(y)dS(y) = ϕ(r) = lim
t→0

ϕ(t) = lim
t→0

 
∂Bt(x)

u(y)dS(y) = u(x)

hence showing the result over a sphere. To show the result over the ball, we use polar
coordinates,�

Br(x)

u(y)dy =

� r

0

(�
∂Bt(x)

u(y)dS(y)

)
dt

=

� r

0

(
nα(n)tn−1

 
∂Bt(x)

u(y)dS(y)

)
dt

=

� r

0

nα(n)tn−1u(x)dt (mean value formula over the sphere)

= α(n)rnu(x)

Thus, dividing α(n)rn to the other side, we have 
Br(x)

u(y)dy = u(x)
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Evans 2.5.3

Modify the proof of the mean-value formulas to show for n ≥ 3 that

u(0) =

 
∂Br(0)

g(x)dS(x) +
1

n(n− 2)α(n)

�
Br(0)

(
1

|x|n−2
− 1

rn−2

)
f(x)dx

provided {
−∆u = f Br(0)

u = g ∂Br(0)

Method 1

Proof. From the proof of the mean value formula, we know that if we define ϕ(r) :=�
∂Br(0)

u(y)dS(y), then

ϕ′(r) =
r

n

 
Br(0)

∆u(y)dy

The trick now is to use the fundamental theorem of calculus in r to get us the u(0) and ϕ(r)
terms.

ϕ(r)− ϕ(ϵ) =

� r

ϵ

ϕ′(t)dt, for 0 < ϵ < r

=

� r

ϵ

t

n

1

α(n)tn

(�
Bt(0)

∆u(y)dy

)
dt

=
1

nα(n)

� r

ϵ

t1−n

(�
Bt(0)

∆u(y)dy

)
dt

To get the rest of the terms, we’ll use integration by parts on the outermost integral. Con-
tinuing the equality from above, we have

=
1

nα(n)

[
−
� r

ϵ

t2−n

2− n

(
d

dt

�
Bt(0)

∆u(y)dy

)
dt+

(
1

2− n
t2−n

�
Bt(0)

∆u(y)dy

∣∣∣∣t=r

t=ϵ

]

=
1

n(2− n)α(n)

� r

ϵ

t2−n

�
∂Bt(0)

f(y)dS(y)dt+
1

n(2− n)α(n)
r2−n

�
Br(0)

∆u(y)dy

− 1

n(2− n)α(n)
ϵ2−n

�
Bϵ(0)

∆u(y)dy

=
1

n(2− n)α(n)

� r

ϵ

t2−n

�
∂Bt(0)

f(y)dS(y)dt︸ ︷︷ ︸
H

+
1

n(n− 2)α(n)
r2−n

�
Br(0)

f(y)dy︸ ︷︷ ︸
I

+
1

n(2− n)α(n)
ϵ2−n

�
Bϵ(0)

f(y)dy︸ ︷︷ ︸
J

50



Considering each integral separately, we’ll start with J .

J =
1

n(2− n)α(n)
ϵ2−n

�
Bϵ(0)

f(y)dy

|J | ≤ 1

n(n− 2)α(n)
ϵ2−n

�
B(0,ϵ)

|f |dy

≤ ∥f∥∞
1

n(n− 2)α(n)
ϵ2−n

�
B(0,ϵ)

dy

=
∥f∥∞

n(n− 2)α(n)
ϵ2−nα(n)ϵn

=
∥f∥∞

n(n− 2)
ϵ2 → 0 as ϵ→ 0.

Next, we see that I is already in the desired form, so we’ll move onto H.

H =
1

n(2− n)α(n)

� r

ϵ

t2−n

�
∂Bt(0)

f(y)dS(y)dt

=
1

n(2− n)α(n)

� r

ϵ

�
∂Bt(0)

f(y)

tn−2
dS(y)dt

=
1

n(2− n)α(n)

� r

ϵ

�
∂Bt(0)

f(y)

tn−2
dS(y)dt

=
1

n(2− n)α(n)

� r

0

�
∂Bt(0)

f(y)

tn−2
dS(y)dt− 1

n(2− n)α(n)

� ϵ

0

�
∂Bt(0)

f(y)

tn−2
dS(y)dt

=
1

n(2− n)α(n)

�
Br(0)

f(y)

|y|n−2
dy − 1

n(2− n)α(n)

� ϵ

0

�
∂Bt(0)

f(y)

tn−2
dS(y)dt︸ ︷︷ ︸

K

Note above that y ∈ ∂Br(0) we have |y| = r. Next, we’ll look at K.

|K| ≤ ∥f∥∞
n(n− 2)α(n)

� ϵ

0

�
∂Bt(0)

t2−ndS(y)dt

=
∥f∥∞

n(n− 2)α(n)

� ϵ

0

t2−n

(�
∂Bt(0)

dS(y)

)
dt

=
∥f∥∞

n(n− 2)α(n)

� ϵ

0

t2−n
(
nα(n)tn−1

)
dt

≤ ∥f∥∞
n− 2

ϵ2 → 0 as ϵ→ 0

Thus, we have

lim
ϵ→0

ϕ(r)− ϕ(ϵ) = lim
ϵ→0

(H + I + J)

ϕ(r)− u(0) =
1

n(2− n)α(n)

�
Br(0)

f(y)

|y|n−2
dydt+

1

n(n− 2)α(n)

�
Br(0)

1

rn−2
f(y)dy

u(0) =

 
∂Br(0)

g(y)dS(y) +
1

n(n− 2)α(n)

�
Br(0)

(
1

|y|n−2
− 1

rn−2

)
f(y)dy
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Method 2

Proof. Using Poisson’s formula for the ball, we have

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|x− y|n
dS(y) +

�
Br(0)

f(y)G(x, y)dy

Let us define
x̃ :=

rx

|x|2
x ∈ Rn\{0}

Then we note that x̃ is the point dual to x if x ∈ Br(0), so

G(x, y) = Φ(y − x)− Φ(|x|(y − x̃)) x, y ∈ Br(0), x ̸= y

Thus,

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|x− y|n
dS(y) +

�
Br(0)

f(y) (Φ(y − x)− Φ(|x|(y − x̃))) dy

=
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|x− y|n
dS(y)

+
1

n(n− 2)α(n)

�
Br(0)

f(y)

(
1

|y − x|n−2
− 1

||x|(y − x̃)|n−2

)
dy

Our goal now is to evaluate u(0), but we note that Φ(x) has a singularity at x = 0, so instead
we must take the limit as |x| → 0 (equivalent to limx→0 since Φ is radially symmetric).
Observe that

lim
|x|→0

∣∣∣∣|x|(y − x̃)

∣∣∣∣ = lim
|x|→0

∣∣∣∣|x|y − |x|x̃
∣∣∣∣

= lim
|x|→0

lim
|x|→0

∣∣∣∣|x|y − |x|x̃
∣∣∣∣

= lim
|x|→0

∣∣∣∣0− lim
|x|→0

|x|x̃
∣∣∣∣

= lim
|x|→0

lim
|x|→0

∣∣∣∣|x|x̃∣∣∣∣
= lim

|x|→0

∣∣∣∣|x| rx|x|2
∣∣∣∣

= r
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Thus,

u(0) =
r

nα(n)

�
∂Br(0)

g(y)

|y|n
dS +

1

n(n− 2)α(n)

�
Br(0)

f(y)

(
1

|y|n−2
− 1

rn−2

)
dy

=
1

nα(n)rn−1

�
∂Br(0)

gdS +
1

n(n− 2)α(n)

�
Br(0)

f(y)

(
1

|y|n−2
− 1

rn−2

)
dy

=

 
∂Br(0)

gdS +
1

n(n− 2)α(n)

�
Br(0)

f(y)

(
1

|y|n−2
− 1

rn−2

)
dy

Evans 2.5.4

Give a direct proof that if u ∈ C2(Ω) ∩ C(Ω) is harmonic within a bounded open set
Ω, then

max
Ω

u = max
∂Ω

u

(Hint: Define uϵ = u+ ϵ|x|2 for ϵ > 0, and show uϵ cannot attain its maximum over Ω
at an interior point.)

Proof. Define uϵ := u + ϵ|x|2 and suppose that there exists x0 = (x01, x
0
2, . . . , x

0
n) ∈ Ω◦ such

that uϵ attains its max at x0. Next, since u is harmonic, then

∆uϵ = ∆u+ 2ϵn = 2ϵn > 0

However, we now define fj : R → R by

fj(x) = uϵ(x
0
1, . . . , x

0
j−1, x, x

0
j+1, . . . , x

0
n)

so fj attains its max at x = x0j . Hence we know that f ′′
j (x

0
j) < 0. Thus, taking the Laplacian

at x0,

∆uϵ(x
0) =

n∑
j=1

∂2uϵ
∂xj2

(x0) =
n∑

j=1

f ′′
j (x

0
j) < 0

which contradicts ∆uϵ > 0. Thus, no such x0 may exist, so

max
Ω

u = max
∂Ω

u

We then see that
max
Ω

u ≤ max
∂Ω

uϵ = max
∂Ω

uϵ = max
∂Ω

u+ ϵ|x|2

Taking ϵ→ 0, we have
max
Ω

u ≤ max
∂Ω

u

and since ∂Ω ⊂ Ω, we know that
max
∂Ω

u ≤ max
Ω

u
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Evans 2.5.5

We say v ∈ C2(Ω) is subharmonic if

−∆v ≤ 0, in Ω.

(a) Prove for subharmonic v that

v(x) ≤
 
Br(x)

v(y)dy, for all Br(x) ⊂ Ω.

(b) Prove that therefore maxΩ v = max∂Ω v.

(c) Let ϕ : R → R be smooth and convex. Assume u is harmonic and v := ϕ(u).
Prove v is subharmonic.

(d) Prove v := |Du|2 is subharmonic whenever u is harmonic.

(a) Proof. Define ϕ(r) :=
�
∂B(x,r)

v(y)dS(y). Then we know that ϕ′(r) = r
n

�
Br(x)

∆v(y)dy.

Since −∆v ≤ 0, then ϕ′(r) ≥ 0 for all r ∈ R+, so ϕ is increasing in r. Thus

v(x) = lim
r→0

ϕ(r) ≤ ϕ(r) =

 
∂Br(x)

v(y)dS(y).

Extending to Br(x) by polar coordinates, we have

�
B(x,r)

v(y)dy =

� r

0

nα(n)tn−1

( 
∂Bt(x)

v(y)dS(y)

)
dt ≥

� r

0

nα(n)tn−1v(x)dt

= nα(n)v(x)
rn

n
= α(n)rnv(x).

Hence, v(x) ≤
�
B(x,r)

v(y)dy.

(b) Proof. Suppose there exists x0 ∈ Ω such that v(x0) = M = maxΩ v. Then for r <
dist(x0, ∂Ω),

M = v(x0) ≤
 
B(x,r)

v(y)dy

Hence, v(y) = M for all y ∈ Br(x). Now, consider the set A := v−1({M}). We have
just shown that A must be open. Next, since {M} is closed and v is continuous, then
A = v−1({M}) must be closed as well. Assuming Ω is connected, then A must either
be ∅ or Ω, but we know that A ̸= ∅, so we are done.
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(c) Proof. Observe,

∆v = ∆(ϕ(u)) =
n∑

i=1

(ϕ(u))xixi

=
n∑

i=1

ϕ′′(u)(uxi
)2 + ϕ′(u)uxixi

(chain rule)

=
n∑

i=1

ϕ′′(u)(uxi
)2 + ϕ′(u)∆u

= ϕ′′(u)
n∑

i=1

(uxi
)2 (since ∆u = 0)

≥ 0 (ϕ convex =⇒ ϕ′′ ≥ 0)

Thus, −∆v ≤ 0.

(d) Proof. Observe,

∆(|Du|2) =
n∑

j=1

n∑
i=1

2

(
∂2u

∂xj∂xi

)2

+ 2
∂u

∂xi
· ∂

∂xi

(
∂2u

∂x2j

)

=
n∑

i,j=1

2

(
∂2u

∂xj∂xi

)2

+
n∑

i=1

2
∂u

∂xi
· ∂

∂xi
(∆u)

=
n∑

i,j=1

2

(
∂2u

∂xj∂xi

)2

≥ 0

Thus, −∆(|Du|2) ≤ 0.

Evans 2.5.6

Let Ω be a bounded, open subset of Rn. Prove that there exists a constant C depending
only on Ω, such that

max
Ω

|u| ≤ C

(
max
∂Ω

|g|+max
Ω

|f |
)

whenever u is a smooth solution of{
−∆u = f in Ω

u = g on ∂Ω

Hint: Consider −∆
(
u+ |x|2

2n
maxΩ |f |

)
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Proof. Observe that

∆

(
u+

|x|2

2n
max
Ω

|f |
)

= ∆u+max
Ω

|f |

= −f +max
Ω

|f | (x ∈ Ω)

≥ 0

Thus, −∆
(
u+ |x|2

2n
maxΩ |f |

)
≤ 0, so

(
u+ |x|2

2n
maxΩ |f |

)
is subharmonic. Thus, by Evans

2.5.5,

max
Ω

u ≤ max
Ω

(
u+

|x|2

2n
max
Ω

|f |
)

= max
∂Ω

(
u+

|x|2

2n
max
Ω

|f |
)

≤ max
∂Ω

g +

(
1

2n
max
∂Ω

|x|2
)
max
Ω

|f |

≤ C

(
max
∂Ω

|g|+max
Ω

|f |
)

Now, let v := −u and we see that this produces an equivalent system{
−∆v = −f in Ω

v = −g on ∂Ω

Then, by a similar process as above, we have
(
v + |x|2

2n
maxΩ |f |

)
is subharmonic, so

max
Ω

(v) ≤ max
Ω

(
v +

|x|2

2n
max
Ω

|f |
)

= max
∂Ω

(
v +

|x|2

2n
max
Ω

|f |
)

≤ max
∂Ω

| − g|+
(

1

2n
max
∂Ω

|x|2
)
max
Ω

|f |

≤ C

(
max
∂Ω

|g|+max
Ω

|f |
)

Thus,

max
Ω

(−u) ≤ C

(
max
∂Ω

|g|+max
Ω

|f |
)

but since maxΩ(−u) = −minΩ u. Thus,

min
Ω
u ≥ −C

(
max
∂Ω

|g|+max
Ω

|f |
)

Thus, combining both results and then taking maxΩ, we have

max
Ω

|u| ≤ C

(
max
∂Ω

|g|+max
Ω

|f |
)
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Evans 2.5.7

Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0)

whenever u is harmonic and positive in Br(0). This is an explicit form of Harnack’s
inequality.

Proof. Using Poisson’s formula for the ball, Br(0), we have

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|y − x|n
dS(y) y ∈ ∂Br(0)

Since x ∈ Br(0), then we know that

|y − x| ≤ |r − x| ≤ r + |x|

Thus,

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|y − x|n
dS(y) ≥ r − |x|

nα(n)r

�
∂Br(0)

u(y)

(r + |x|)n−1
dS(y)

=
r − |x|
nα(n)r

1

(r + |x|)n−1

�
∂Br(0)

u(y)dS(y)

= rn−2 r − |x|
(r + |x|)n−1

 
∂Br(0)

u(y)dS(y)

= rn−2 r − |x|
(r + |x|)n−1

u(0) (Mean Value)

Next, since y ∈ ∂Br(0)
r = |y| ≤ |y − x|+ |x|

then |y − x| ≥ r − |x|. Thus,

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|y − x|n
dS(y) ≤ r + |x|

nα(n)r

�
∂Br(0)

u(y)

(r − |x|)n−1
dS(y)

=
r + |x|
nα(n)r

1

(r − |x|)n−1

�
∂Br(0)

u(y)dS(y)

= rn−2 r + |x|
(r − |x|)n−1

 
∂Br(0)

u(y)dS(y)

= rn−2 r + |x|
(r − |x|)n−1

u(0) (Mean Value)
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Evans 2.5.8

Prove Poisson’s formula for the ball. Assume g ∈ C(∂Br(0)) and define u by

u(x) =
r2 − |x|2

nα(n)r

�
∂Br(0)

g(y)

|y − x|n
dS(y) x ∈ Br(0)

Then,

(i) u ∈ C∞(Br(0)).

(ii) ∆u = 0 in Br(0).

(iii) lim
x→x0

x∈Br(0)

u(x) = g(x0) for each x0 ∈ ∂Br(0).

Hint: Since u ≡ 1 solves {
∆u = 0 in Br(0)

u = g on ∂Br(0)

for g ≡ 1, the theory automatically implies

�
∂Br(0)

K(x, y)dS(y) = 1 where K(x, y) =
r2 − |x|2

nα(n)r

1

|x− y|n

for each x ∈ Br(0).

Vector Calculus Identities: Let ϕ, ψ : Rn → R and F : Rn → Rn

∇ · (ϕF ) = ϕ(∇ · F ) + (∇ϕ) · F
∆(ϕψ) = ϕ∆ψ + 2(∇ϕ) · (∇ψ) + ψ∆ϕ

Note that we develop Poisson’s formula for u(x) as a solution to Laplace’s equation under
the assumption that a smooth solution exists. The theorem then shows that, indeed, u(x)
is smooth and it is a solution to Laplace’s equation.

Proof. Let u := r2 − |x|2 and v := |x− y|−n so that

nα(n)rK(x, y) = uv
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Calculating, we have ∇u = −2x, ∆u = −2n and

∇v = ∇|x− y|−n

= −n|x− y|−(n+1) · ∇|x− y|

= −n|x− y|−(n+1) · x− y

|x− y|

= −n x− y

|x− y|n+2

∆v = ∇ · (∇v)

= −n
[
|x− y|−(n+2)n− (n+ 2)|x− y|−(n+3) (x− y)

|x− y|
· (x− y)

]
= −n2|x− y|−(n+2) + n(n+ 2)

|x− y|2

|x− y|n+4

=
−n2

|x− y|n+2
+

n2 + 2n

|x− y|n+2

=
2n

|x− y|n+2

Then using the product rule for the Laplacian and noting that |y| = r,

∆(uv) = (r2 − |x|2) 2n

|x− y|n+2
− 2n

x− y

|x− y|n+2
· (−2x) + |x− y|−n(−2n)

|x− y|n+2∆(uv) = 2n|y|2 − 2n|x|2 + 4n|x|2 − 4nx · y − 2n|x− y|2

= 2n
(
|y|2 + |x|2 − 2x · y − |x|2 − |y|2 + 2x · y

)
= 0

Thus, ∆K(x, y) = 0, so K is harmonic. Moreover, since K is continuous for x ̸= y, then

∆u(x) = ∆

(�
∂Br(0)

K(x, y)g(y)dS(y)

)
=

�
∂Br(0)

∆K(x, y)g(y)dS(y) = 0

so u is harmonic and it is clear that u ∈ C2(Br(0)), so u satisfies the mean value property
for all balls Bs(x) ⊆ Br(0), so by the smoothness theorem (Evans thm. 2.2.6), we have that
u ∈ C∞(Br(0)).

Next, note that when g ≡ 1, Then by the uniqueness of smooth solutions, u ≡ 1 solves,{
∆u = 0 in Br(0)

u = g on ∂Br(0)

and by Poisson’s formula, if x ∈ Br(0),

1 = u(x) =

�
∂Br(0)

K(x, y)g(y)dS(y) =

�
∂Br(0)

K(x, y)dS(y)
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Now let ϵ > 0, x0 ∈ ∂Br(0) and x ∈ Br(0). Since g ∈ C(∂Br(0)), we can choose δ > 0
such that

|g(y)− g(x0)| <
ϵ

2
when |y − x0| < δ, y ∈ ∂Br(0)

|u(x)− u(x0)| =
∣∣∣∣�

∂Br(0)

K(x, y)g(y)dS(y)−
�
∂Br(0)

K(x, y)(x0)|dS(y)
∣∣∣∣

≤
�
∂Br(0)

K(x, y)|g(y)− g(x0)|dS(y)

=

�
∂Br(0)∩Bδ(x0)

K(x, y)|g(y)− g(x0)|dS(y)

+

�
∂Br(0)\Bδ(x0)

K(x, y)|g(y)− g(x0)|dS(y)

=: I + J

Estimating each integral, we have

I <
ϵ

2

�
∂Br(0)∩Bδ(x0)

K(x, y)|dS(y) ≤ ϵ

2

and for J , we first see that if |x − x0| < δ
2
, then since y ∈ ∂Br(0)\Bδ(x0), we know that

|y − x0| ≥ δ. Thus,

|y − x0| ≤ |y − x|+ |x− x0| < |y − x|+ δ

2
≤ |y − x|+ 1

2
|y − x0|

Hence, 1
|y−x| ≤

2
|y−x0| ≤

2
δ
, so

J ≤ 2∥g∥L∞(∂Br(0))

�
∂Br(0)\Bδ(x0)

K(x, y)dS(y)

= 2∥g∥L∞(∂Br(0))
r2 − |x|2

nα(n)r

�
∂Br(0)\Bδ(x0)

1

|y − x|n
dS(y)

= 2∥g∥L∞(∂Br(0))
|x0|2 − |x|2

nα(n)|x0|

�
∂Br(0)\Bδ(x0)

1

|y − x|n
dS(y) (|x0| = r)

≤ 2∥g∥L∞(∂Br(0))
(|x0| − |x|)2∥x0|

nα(n)|x0|

�
∂Br(0)\Bδ(x0)

1

|y − x|n
dS(y)

≤ 22∥g∥L∞(∂Br(0))
(|x0| − |x|)
nα(n)

�
∂Br(0)\Bδ(x0)

1

|y − x|n
dS(y)

≤ 22∥g∥L∞(∂Br(0))
(|x0| − |x|)
nα(n)

�
∂Br(0)

2n

δn
dS(y) (by above)

= 2n+2∥g∥L∞(∂Br(0))
(|x0| − |x|)
nα(n)δn

nα(n)rn−1

=
2n+2∥g∥L∞(∂Br(0))r

n−1

δn
(|x0| − |x|)
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so further assuming that |x0 − x| < ϵδn

2n+3∥g∥L∞(∂Br(0))r
n−1 , we have

J <
ϵ

2

Thus,

|u(x)− u(x0)| < I + J <
ϵ

2
+
ϵ

2
= ϵ.

Evans 2.5.9

Let u be a solution of {
∆u = 0 in Rn

+

u = g on ∂Rn
+

given by Poisson’s formula for the half-space. Assume g is bounded and g(x) = |x| for
x ∈ ∂Rn

+, |x| ≤ 1. Show Du is not bounded near x = 0. (Hint: Estimate u(λen)−u(0)
λ

).

Proof. Using Poisson’s formula for the half-space, we have

u(x) =
2xn
nα(n)

�
∂Rn

+

g(y)

|x− y|n
dS(y)

Let M > 0 be a bound on g. By the hint above and noting that u(0) = 0,

u(λen)− u(0)

λ
=

2λ

λnα(n)

�
∂Rn

+

g(y)

|x− y|n
dS(y)

=
2

nα(n)

�
∂Rn

+∩{|y|≤1}

|y|
|λen − y|n

dS(y) +
2

nα(n)

�
∂Rn

+\{|y|≤1}

g(y)

|x− y|n
dS(y)

≥ 2

nα(n)

�
∂Rn

+∩{|y|≤1}

|y|
|λen − y|n

dS(y)− 2M

nα(n)

�
∂Rn

+\{|y|≤1}

1

|x− y|n
dS(y)

We see that the second integral above is bounded since n ≥ 2. (The n = 1 case is trivial
since we integrate over a single point.) Now note that for y ∈ ∂Rn

+, we must have yn = 0
and for y ∈ {|y| ≤ 1}, we must have yi ≤ 1 for 1 ≤ i ≤ n. Thus,

2

nα(n)

�
∂Rn

+∩{|y|≤1}

|y|
|λen − y|n

dS(y) ≥ 2

nα(n)

�
∂Rn

+∩{|y|≤1}

|y|
(n+ λ2)n/2

dS(y)

=
2

nα(n)(n+ λ2)n/2

�
∂Rn

+∩{|y|≤1}
|y|dS(y)

which goes to +∞ as λ→ 0. Thus,

lim
λ→0

u(λen)− u(0)

λ
= +∞

so ∂u
∂xn

diverges near 0. Thus, Du cannot be bounded near 0.
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Evans 2.5.10

(Reflection Principle)

(a) Let Ω+ denote the open half-ball,

Ω+ = {x ∈ Rn : |x| < 1, xn > 0}

Assume u ∈ C2(Ω+) is harmonic in Ω+, with u = 0 on ∂Ω+ ∩ {xn = 0}. Set

v(x) :=

{
u(x) if xn ≥ 0

−u(x1, . . . , xn−1,−xn) if xn < 0

for x ∈ Ω = B1(0). Prove v ∈ C2(Ω) and thus, v is harmonic within Ω.

(b) Now assume only that u ∈ C2(Ω+)∩C(Ω+) is harmonic. Show that v is harmonic
only in Ω. (Hint: Poisson’s formula for the ball.)

Proof.

(a) We see that v ∈ C2(Ω+) and v ∈ C2(Ω\Ω+) by definition since u ∈ C2(Ω+). Thus, we
see that

lim
xn→0+

∂xixj
v(x1, . . . , xn) = ∂xixj

v(x1, . . . , xn−1, 0) (v ∈ C2)

= ∂xixj
u(x1, . . . , xn−1, 0)

= lim
xn→0−

∂xixj
[u(x1, . . . , xn−1,−xn)]

In the last equality above, we see that

∂xixj
[u(x1, . . . ,−xn)] = − lim

xn→0−
∂xixj

u(x1, . . . ,−xn) = lim
xn→0−

∂xixj
v(x1, . . . , xn)

for the case where either i or j equals n. If i, j < n, then we know that u(x) = 0 for

x ∈ ∂Ω+ ∩ {xn = 0} = {x ∈ Rn : |x| ≤ 1, xn = 0}

Thus, ∂xi
u(x) = 0 for 1 ≤ i < n, and hence ∂xixj

u(x) = 0 for 1 ≤ j < n. Thus, in this
case,

lim
xn→0+

∂xixj
v(x1, . . . , xn) = 0 = lim

xn→0−
∂xixj

v(x1, . . . , xn)

Finally, for the case where i = j = n, we know that ∆u = 0 since u is harmonic and
since ∂xixi

u(x) = 0 for 1 ≤ i < n, then we must have that ∂xnxnu(x) = 0 as well. Thus,
v ∈ C2(Ω) and v is harmonic.

(b) Using Poisson’s formula for the ball, we’ll define the function

w(x) :=

{
1−|x|2
nα(n)r

�
∂Ω

v(y)
|x−y|ndS(y) x ∈ Ω

v(x) x ∈ ∂Ω
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Then we first make the observation that for x ∈ Ω ∩ {xn = 0},

w(x) =
1− |x|2

nα(n)r

�
∂Ω

v(y)

|x− y|n
dS(y)

=
1− |x|2

nα(n)r

�
∂Ω∩{yn=0}

v(y)

|x− y|n
dS(y)

+
1− |x|2

nα(n)r

�
∂Ω∩{yn>0}

v(y)

|x− y|n
dS(y)

+
1− |x|2

nα(n)r

�
∂Ω∩{yn<0}

v(y)

|x− y|n
dS(y)

= 0 +
1− |x|2

nα(n)r

�
∂Ω∩{yn>0}

u(y1, . . . , yn)

|x− y|n
dS(y)

+
1− |x|2

nα(n)r

�
∂Ω∩{yn<0}

−u(y1, . . . , yn−1,−yn)
|x− y|n

dS(y)

Now, we note that (xn − yn)
2 = (xn + yn)

2 iff xn = 0, so using the reflection y 7→ ỹ
where ỹ = (y1, . . . , yn−1,−yn), then

w(x) =
1− |x|2

nα(n)r

�
∂Ω∩{yn>0}

u(y1, . . . , yn)

|x− y|n
dS(y)

+
1− |x|2

nα(n)r

�
∂Ω∩{yn>0}

−u(y1, . . . , yn)
|x− y|n

dS(y)

= 0

Thus, we have that w = v on Ω ∩ {xn = 0}, and w = v on ∂Ω. Moreover, since
v ∈ C2(Ω+)∩C(Ω+) is harmonic, then we may apply the maximum principle on w− v
on Ω+, to get that

max
Ω+

w − v = max
∂Ω+

w − v = 0 and min
Ω+

w − v = min
∂Ω+

w − v = 0

which, when combined, gives

max
Ω+

|w − v| = 0 =⇒ w = v in Ω+

Similarly, we can show that w = v in Ω\Ω+. Therefore, v is harmonic on all of Ω.

Evans 2.5.12

Suppose u is smooth and solves ut −∆u = 0 in Rn × (0,∞).

(a) Show uλ(x, t) = u(λx, λ2t) also solves the heat equation for each λ ∈ R.
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(b) Use (a) to show v(x, t) = x ·Du(x, t)+2tut(x, t) solves the heat equation as well.

Proof.

(a) This is almost trivial by direct computation,

[uλ(x, t)]t = λ2ut(x, t) ∆[uλ(x, t)] = λ2∆u(x, t)

(b) We notice that
∂λ[uλ(x, t)] = x ·Du(λx, λ2t) + 2λtut(λx, λ

2t)

and so
v(x, t) = [uλ(x, t)]λ for λ = 1

and since u is smooth, we can commute differential operators to get

vt −∆v = (∂t −∆)[v] = (∂t −∆)(∂λ)[uλ]

= ∂λ(∂t −∆)[uλ]

= ∂λ[0] = 0

Evans 2.5.13

Assume n = 1 and u(x, t) = v
(

x√
t

)
.

(a) Show

ut = uxx iff v′′ +
z

2
v′ = 0

and show that the general solution of the ODE above is

v(z) = c1

� z

0

e−
s2

4 ds+ c2

(b) Differentiate u(x, t) = v
(

x√
t

)
w.r.t. x and select the constant c properly to

obtain the fundametal solution Φ for n = 1. Explain why this procedure produces
the fundamental solution. (Hint: What is the initial condition for u?)

Proof.
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(a) By direct computation,

ut = v′
(
x√
t

)(
− x

2t3/2

)
uxx = v′′

(
x√
t

)
1

t

Equating the two and letting z = x√
t
, we have

v′(z)
(
− z

2t

)
= v′′(z)

1

t

v′′ +
z

2
v′ = 0

and solving the above ODE, we have

v′′

v′
= −z

2

ln |v′| = −z
2

4
+ c1

v′ = c1e
− z2

4

v(z) = c1

� z

0

e−
s2

4 ds+ c2

(b) Differentiating w.r.t. x, we have

ux(x, t) =
c1√
t
e−

x2

4t

and we notice that c1 =
1√
4π

gives the fundamental solution for n = 1.

Evans 2.5.14

Write down an explicit formula for a solution of{
ut −∆u+ cu = f in Rn × (0,∞)

u = g on Rn × {t = 0}

where c ∈ R.

Proof. Define v(x, t) := u(x, t)ect, then we see that

vt = ute
ct + cuect

∆v = ∆uect

so
vt −∆v = (ut −∆u+ cu)ect = fect
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and
v(x, 0) = u(x, 0) = g

Thus, v solves the heat equation so we may use the formula for the inhomogeneous initial
value solution:

v(x, t) =
1

(4πt)n/2

�
Rn

e−
|x−y|2

4t g(y)dy +

� t

0

1

(4π(t− s))n/2

�
Rn

e−
|x−y|2
4(t−s) f(y, s)dyds

Thus, multiplying by e−ct above gives the solution u(x, t) to the original equation.

Evans 2.5.15

Given g : [0,∞) → R, with g(0) = 0, derive the formula

u(x, t) =
x√
4π

� t

0

1

(t− s)3/2
e−

x2

4(t−s) g(s)ds

for a solution of the initial/boundary-value problem,
ut − uxx = 0 in R+ × (0,∞)

u = 0 on R+ × {t = 0}
u = g on {x = 0} × [0,∞)

(Hint: Let v(x, t) := u(x, t)− g(t) and extend v to {x < 0} by odd reflection.)

Proof. Defining v(x, t) := u(x, t)− g(t) for x ≥ 0 and extending to x < 0 by odd reflection,
we have

v(x, t) =

{
u(x, t)− g(t) x ≥ 0

−u(−x, t) + g(t) x < 0

vt(x, t) =

{
ut(x, t)− g′(t) x ≥ 0

−ut(−x, t) + g′(t) x < 0

vxx(x, t) =

{
uxx(x, t) x ≥ 0

−uxx(−x, t) x < 0

Thus, we form the following initial/boundary-value problem
vt − vxx =

{
−g′(t) x ≥ 0

g′(t) x < 0

v(x, 0) = 0 x ̸= 0

v(0, t) = 0 t ∈ (0,∞)
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which takes the form of the heat equation. Thus using the formula for its solution, we have

v(x, t) =

� t

0

(�
R−

Φ(x− y, t− s)g′(s)dy −
�
R+

Φ(x− y, t− s)g′(s)dy

)
ds

=

� t

0

(
2

�
R−

Φ(x− y, t− s)g′(s)dy − g′(s)

�
R
Φ(x− y, t− s)dy

)
ds

=

� t

0

(
2g′(s)

�
R−

Φ(x− y, t− s)dy − g′(s)

)
ds (

�
R Φ(y, t)dy = 1 for any t)

=

� t

0

2g′(s)

�
R−

Φ(x− y, t− s)dyds− g(t)− g(0)

= −g(t) +
� t

0

g′(s)
√
π
√
t− s

�
R−

e−
|x−y|2
4(t−s) dyds

Since v(x, t) = u(x, t)− g(t), then

u(x, t) =

� t

0

g′(s)
√
π
√
t− s

� 0

−∞
e−

|x−y|2
4(t−s) dyds

=

� t

0

g′(s)√
π

(� ∞

x

1√
t− s

e−
z2

4(t−s)dz

)
ds (z = x− y)

Integrating by parts in s, we have

u(x, t) =

[
g(s)√
π

� ∞

x

1√
t− s

e−
z2

4(t−s)dz

]s=t

s=0

−
� t

0

g(s)√
π

(� ∞

x

1

2
(t− s)−3/2e−

z2

4(t−s) − z2

4(t− s)5/2
e−

z2

4(t−s)dz

)
ds

= −
� t

0

g(s)√
π

� ∞

x

1

2(t− s)3/2
e−

z2

4(t−s)dzds

+

� t

0

g(s)√
π

� ∞

x

z

2(t− s)3/2
d

dz

[
e−

z2

4(t−s)

]
dzds

=: I + J

Integrating J by parts in z, we have

J =

� t

0

g(s)√
π

([
z

2(t− s)3/2
e−

z2

4(t−s)

]∞
x

−
� ∞

x

1

2(t− s)3/2
e−

z2

4(t−s)dz

)
ds

=

� t

0

g(s)√
π

(
−x

2(t− s)3/2
e−

x2

4(t−s) −
� ∞

x

1

2(t− s)3/2
e−

z2

4(t−s)dz

)
ds

= − x√
4π

� t

0

g(s)

(t− s)3/2
e−

x2

4(t−s)ds− I
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Thus,

u(x, t) = − x√
4π

� t

0

g(s)

(t− s)3/2
e−

x2

4(t−s)ds

Evans 2.5.16

Give a direct proof that if Ω is bounded and u ∈ C2
1(ΩT ) ∩ C(ΩT ) solves the heat

equation ut −∆u = 0, then
max
ΩT

u = max
ΓT

u

(Hint: Define uϵ := u− ϵt for ϵ > 0, and show uϵ cannot attain its maximum over ΩT

at a point in ΩT )

Proof. Let uϵ := u − ϵt, ϵ > 0. We first note that if u attains its maximum at a point
(x0, t0) ∈ ΩT , then

uϵ(x
0, t0) = u(x0, t0)− ϵt0 ≥ u(x, t)− ϵt0 for all (x, t) ∈ ΩT

Taking ϵ→ 0, we have

uϵ(x
0, t0) ≥ u(x, t) ≥ u(x, t)− ϵt = uϵ(x, t) for all (x, t) ∈ ΩT

Thus showing uϵ attains its max in ΩT . Thus, by contrapositive, it suffices to show that uϵ
cannot attain its max in ΩT .

Indeed if uϵ attains its max at (x0, t0) = (x01, . . . , x
0
n, t0) ∈ ΩT , then we first observe that

[uϵ]t −∆uϵ = ut − ϵ−∆u = −ϵ < 0

Now define πj : Rn+1 → R as the j-th coordinate map, i.e.

πj(x1, . . . , xj, . . . , xn+1) = xj

Then for each 1 ≤ j ≤ n+ 1, define the map fj : πj(ΩT ) → R by

fj(z) =

{
uϵ(x

0
1, . . . , x

0
j−1, z, x

0
j+1, . . . , x

0
n, t0) 1 ≤ j ≤ n

uϵ(x
0
1, . . . , x

0
n, z) j = n+ 1

By definition, we have that fj(z) attains its max at x0j for 1 ≤ j ≤ n and at t0 for j = n+1,
hence f ′′

j (z) < 0 and f ′
j(z) = 0 at such points. Next, we observe that

0 = f ′
n+1(t0) =

d

dz
uϵ(x

0
1, . . . , x

0
n, z)

∣∣∣∣
z=t0

= [uϵ(x, t)]t

∣∣∣∣
(x,t)=(x0,t0)

0 > f ′′
j (x

0
j) =

d2

dz2
uϵ(x

0
1, . . . , x

0
j−1, z, x

0
j+1, . . . , x

0
n, t0) = [uϵ(x, t)]xjxj

∣∣∣∣
(x,t)=(x0,t0)

(1 ≤ j ≤ n)
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Thus,

0 < f ′
n=1(t0)−

n∑
j=1

f ′′
j (x

0
j) = [uϵ]t −

n∑
j=1

[uϵ]xjxj
= [uϵ]t −∆uϵ < 0

a contradiction. Thus, uϵ does not attain its maximum in ΩT .

Evans 2.5.24

(Equipartition of energy) Let u solve the initial-value problem for the wave equation
in one dimension: {

utt − uxx = 0 in R× (0,∞)

u = g, ut = h on R× {t = 0}

Suppose g, h have compact support. The kinetic energy

k(t) :=
1

2

� ∞

−∞
u2t (x, t)dx

and the potential energy is

p(t) :=
1

2

� ∞

−∞
u2x(x, t)dx

Prove

(a) k(t) + p(t) is constant in time t.

(b) k(t) = p(t) for all large times t.

Proof.

(a) Observe that

k(t) + p(t) =
1

2

� ∞

−∞
u2t + u2xdx

d

dt
[k(t) + p(t)] =

1

2

� ∞

−∞
2ututt + 2uxuxtdx

=

� ∞

−∞
ututt − uxxutdx (int. by parts)

= 0 (by the PDE)

(b) Next, we first recall d’Alembert’s formula,

u(x, t) =
1

2
(g(x+ t)− g(x− t)) +

1

2

� x+t

x−t

h(y)dy
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ux(x, t) =
1

2
(g′(x+ t)− g′(x− t)) +

1

2
(h(x+ t)− h(x− t))

ut(x, t) =
1

2
(g′(x+ t) + g′(x− t)) +

1

2
(h(x+ t) + h(x− t))

Thus,

k(t)− p(t) =
1

2

� ∞

−∞
u2t − u2xdx

=
1

2

� ∞

−∞
(ut − ux)(ut + ux)dx

=
1

2

� ∞

−∞
(g′(x− t) + h(x− t))(g′(x+ t) + h(x+ t))dx

Since g, h are compactly supported, then we also have that g′ is compactly supported,
so choose M > 0 such that

supp(g′), supp(h) ⊆ [−M,M ]

Then for t > M , we’ll consider the following cases:

� If x ≥ 0, then
g′(x+ t) = h(x+ t) = 0 (since x+ t > M)

so that k(t)− p(t) = 0

� If x < 0, then
x− t < x−M < −M

so g′(x− t) = h(x− t) = 0, so that k(t)− p(t) = 0.

Thus, for every x ∈ R, k(t)− p(t) = 0.

70



4 Part C

Evans 5.10.1

Prove that the Holder space Ck,γ(Ω) is a Banach space for any nonnegative integer k
and 0 < γ ≤ 1.

Proof. Let α be a multi-index with |α| = k. We’ll first show that [·]Ck,γ(Ω) is a seminorm.

1. Let λ ∈ R and u ∈ Ck,γ(Ω). Then

[λu]Ck,γ(Ω) = sup
x,y∈Ω
x ̸=y

{
|Dα[λu](x)−Dα[λu](y)

|x− y|

}

= sup
x,y∈Ω
x ̸=y

{
|λ| |D

αu(x)−Dαu(y)|
|x− y|

}
= |λ|[u]Ck,γ(Ω)

2. Let u, v ∈ Ck,γ(Ω).

[u+ v]Ck,γ(Ω) = sup
x,y∈Ω
x ̸=y

{
|(u+ v)(x)− (u+ v)(y)|

|x+ y|

}

≤ sup
x,y∈Ω
x ̸=y

{
|u(x)− u(y)|+ |v(x)− v(y)|

|x− y|

}

≤ sup
x,y∈Ω
x ̸=y

{
|u(x)− u(y)|

|x− y|

}
+ sup

x,y∈Ω
x ̸=y

{
|v(x)− v(y)|

|x− y|

}
= [u]Ck,γ(Ω) + [v]Ck,γ(Ω)

Next, defining
∥u∥Ck,γ(Ω) = ∥u∥Ck(Ω) + [u]Ck,γ(Ω)

we will show that ∥u∥Ck,γ(Ω) is a norm.

1. Since ∥ · ∥Ck(Ω) is a norm and [·]Ck,γ(Ω) is a seminorm, then we know ∥λu∥Ck,γ(Ω) =
|λ| · ∥u∥Ck,γ(Ω) and ∥u+ v∥Ck,γ(Ω) ≤ ∥u∥Ck,γ(Ω) + ∥v∥Ck,γ(Ω).

2. It is clear that ∥0∥Ck,γ(Ω) = 0, so suppose now that ∥u∥Ck,γ(Ω) = 0. Thus,∑
|α|≤k

∥Dαu∥C(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω) = 0

Particularly, ∥u∥C(Ω) = 0 implies that u = 0.
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Hence, ∥ · ∥Ck,γ(Ω) is a norm. Now let ϵ > 0 and (un)
∞
n=1 ⊂ Ck,γ(Ω) be a Cauchy sequence.

Then there exists N ∈ N such that if n,m ≥ N then ∥un−um∥Ck,γ(Ω) < ϵ. Thus, we see that

∥un∥Ck,γ(Ω) ≤ ∥un − uN∥Ck,γ(Ω) + ∥uN∥Ck,γ(Ω) < ϵ+ ∥uN∥Ck,γ(Ω) <∞

since Ω is compact. Hence, un is bounded, i.e.

∥un∥Ck,γ(Ω) ≤ max{∥u1∥Ck,γ(Ω), · · · ∥uN∥Ck,γ(Ω)}

Thus, there exists a convergent subsequence (unk
)∞k=1. Let limk→∞ unk

= u. Next, there exists
N1, N2 ∈ N such that ∥un − unk

∥Ck,γ(Ω) < ϵ/2 for n, nk ≥ N1 and ∥unk
− u∥Ck,γ(Ω) < ϵ/2 if

nk ≥ N2. Choosing the larger of the two, we have

∥un − u∥Ck,γ(Ω) ≤ ∥un − unk
∥Ck,γ(Ω) + ∥unk

− u∥Ck,γ(Ω) < ϵ.

for all n, nk ≥ max{N1, N2}. Thus, un → u. To show that u ∈ Ck,γ(Ω), we recall that
un ∈ Ck,γ(Ω), so there exists C > 0 such that

|Dαun(x)−Dαun(y)| < C|x− y|γ

Thus, if we choose n sufficiently large so that ∥u− un∥Ck,γ(Ω) < ϵ/2, we have

|Dαu(x)−Dαu(y)| ≤ |Dαu(x)−Dαun(x)|+ |Dαun(x)−Dαun(y)|+ |Dαun(y)−Dαu(y)|
≤ 2∥u− un∥Ck,γ(Ω) + |Dαun(x)−Dαun(y)|
< ϵ+ C|x− y|γ

so we have that
|Dαu(x)−Dαu(y)| ≤ C|x− y|γ < (C + 1)|x− y|γ

Hence, u ∈ Ck,γ(Ω).

Evans 5.2 Example 2

Consider the function

f(x) =

{
1, 0 < x < 1

0, 1 ≤ x < 2

Show that f(x) does not have a weak derivative.
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Solution: Suppose by contradiction that f has a weak derivative g, i.e. f ′ = g in the weak
sense. Then for all test functions, h ∈ C∞

c ([0, 2]), we have that� 2

0

fh′ = −
� 2

0

gh (g = f ′)

� 1

0

h′ = −
� 2

0

gh (Definition of f)

h(1)− h(0) = −
� 2

0

gh (FTC)

h(1) = −
� 2

0

gh (h ∈ Cc([0, 2]))

Now, consider the sequence (hm)
∞
m=1 ⊂ C∞

c ([0, 2]) where

hm(x) = (2x− x2)m

Then, we know that hm(1) = 1 for all m and for x ∈ [0, 2]\{1}, we see that 2x− x2 ∈ (0, 1),
so hm(x) → 0 as m→ ∞. Thus,

hm(1) = 1 = −
� 2

0

g(x)(2x− x2)mdx

Hence, taking m→ ∞, we see that

1 = lim
m→∞

−
� 2

0

g(x)(2x− x2)mdx = 0

a contradiction. Thus, f does not have a weak derivative.

Product Rule for Weak Derivatives

If f ∈ L1
loc(Ω) has a weak partial derivative fxi

∈ L1
loc(Ω) and ψ ∈ C∞(Ω), then ψf is

weakly differentiable with respect to xi and

(ψf)xi
= ψxi

f + ψ(fxi
)

Proof. Let ϕ ∈ C∞
c (Ω). Then, we know that (ψϕ) ∈ C∞

c (Ω), so we may use ψϕ as the test
function for the weak differentiability of f .

−
�
Ω

fxi
(ψϕ)dx =

�
Ω

f(ψϕ)xi
dx

=

�
Ω

f(ψxi
ϕ+ ψϕxi

)dx (classical product rule)

=

�
Ω

(fψxi
)ϕdx+

�
Ω

(fψ)ϕxi
dx

�
Ω

(fψ)ϕxi
dx = −

�
Ω

(fψxi
+ fxi

ψ)ϕdx
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Evans 5.10.2

Assume 0 < β < γ ≤ 1. Prove the interpolation inequality

∥u∥C0,γ(Ω) ≤ ∥u∥
1−γ
1−β

C0,β(Ω)
∥u∥

γ−β
1−β

C0,1(Ω)

Proof. We first recall that

∥u∥C0,γ(Ω) = ∥u∥C(Ω) + [u]C0,γ(Ω)

and we’ll let p := 1−γ
1−β

and q := γ−β
1−β

and we see that p+ q = 1. Now, we see that

∥u∥C0,γ(Ω) = ∥u∥p+q
C(Ω) + [u]C0,γ(Ω)

= ∥u∥pC(Ω)∥u∥
q
C(Ω) + sup

x,y∈Ω
x ̸=y

(
|u(x)− u(y)|p+q

|x− y|γ

)

= ∥u∥pC(Ω)∥u∥
q
C(Ω) + sup

x,y∈Ω
x ̸=y

(
|u(x)− u(y)|p |u(x)− u(y)|q

|x− y|q (|x− y|β)p
)

(q + pβ = γ)

≤ ∥u∥pC(Ω)∥u∥
q
C(Ω) + [u]p

C0,β(Ω)
[u]qC0,1(Ω)

Now let a := ∥u∥C(Ω), b := [u]C0,β(Ω), and c := [u]C0,1(Ω). Then

∥u∥C0,γ(Ω) ≤ apaq + bpcq

= (a+ b)p
(

apaq

(a+ b)p
+

bpcq

(a+ b)p

)
(force (a+ b)p)

= (a+ b)p
(

a1−qaq

(a+ b)1−q
+

b1−qcq

(a+ b)1−q

)
(convert to q exponent)

= (a+ b)p
(

a

a+ b

(
a(a+ b)

a

)q

+
b

a+ b

(
c(a+ b)

b

)q)
(collect terms with q)

≤ (a+ b)p(a+ c)q (concavity of xq, q ∈ (0, 1))

= ∥u∥
1−γ
1−β

C0,β(Ω)
∥u∥

γ−β
1−β

C0,1(Ω)

Evans 5.10.4

Assume n = 1 and u ∈ W 1,p(0, 1) for some 1 ≤ p <∞.

(a) Show that u is equal a.e. to an absolutely continuous function and u′ (which
exists a.e.) belongs to Lp(0, 1).
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(b) Prove that if 1 < p <∞, then

|u(x)− u(y)| ≤ |x− y|1−
1
p

(� 1

0

|u′|pdt
)1/p

for a.e. x, y ∈ [0, 1].

Proof.

(a) Since u′ exists a.e. and u′ ∈ Lp(0, 1), then by Holder’s inequality, u′ ∈ L1(0, 1), so let
v(x) :=

� x

0
u′(y)dy for x ∈ (0, 1). Then by the fundamental theorem of calculus for

Lebesgue integrals, we know that v is absolutely continuous on (0, 1). Now consider a
test function ϕ ∈ C∞

c (0, 1) and observe that

� 1

0

(v − u)ϕ′dy =

� 1

0

(� y

0

u′(x)dx

)
ϕ′(y)dy −

� 1

0

u(y)ϕ′(y)dy

= −
� 1

0

u′(y)ϕ(y)dy +

� 1

0

u′(y)ϕ(y)dy

= 0

Since this holds for all ϕ ∈ C∞
c (0, 1), then v = u a.e.

(b) By (a), since u is absolutely continuous a.e., we may apply FTC, to get

|u(x)− u(y)| =
∣∣∣∣� y

x

u′(t)dt

∣∣∣∣ ≤ � y

x

|u′(t)|dt

≤ ∥u∥L1(x,y) (assume x < y)

≤ |x− y|1−
1
p∥u′∥Lp(x,y)

≤ |x− y|1−
1
p∥u′∥Lp(0,1)

Evans 5.10.7

Assume that Ω is bounded open subset of Rn and there exists a smooth vector field
α : Ω → Rn such that α · ν ≥ 1 along ∂Ω, where ν denotes the usual outward unit
normal. Assume 1 ≤ p <∞.
Apply the Gauss-Green theorem to

�
∂Ω

|u|pα · νdS, to derive a new proof of the trace
inequality �

∂Ω

|u|pdS ≤ C

�
Ω

|Du|p + |u|pdy
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for all u ∈ C(Ω).

Proof. Since u ∈ C(Ω), applying the Gauss-Green theorem, we have

�
∂Ω

|u|pdS ≤
�
∂Ω

|u|pα · νdS (α · ν ≥ 1)

≤
�
Ω

∇ · (|u|pα)dy (Gauss-Green)

=

�
Ω

|u|p(∇ · α) +∇(|u|p) · αdy

=

�
Ω

|u|p(∇ · α) + p|u|p−1 sgn(u)(Du · α)dy

≤ C

�
Ω

|u|p + p|u|p−1|Du|dy (α smooth on Ω bounded)

≤ C

�
Ω

|u|p + p

(
(|u|p−1)

p
p−1

p
p−1

+
|Du|p

p

)
dy (Young’s inequality)

= C

�
Ω

|u|p + (p− 1)|u|p + |Du|pdy

≤ C

�
Ω

|u|p + |Du|pdy

Evans 5.10.8

Let Ω be bounded, with a C1 boundary. Show that a typical function u ∈ Lp(Ω)
(1 ≤ p < ∞) does not have a trace on ∂Ω. More precisely, prove there does not exist
a bounded linear operator

T : Lp(Ω) → Lp(∂Ω)

such that Tu = u
∣∣
∂Ω

whenever u ∈ C(Ω) ∩ Lp(Ω)

Proof. Suppose there exists such a T . Then consider the sequence

un(x) = e−n·dist(x,∂Ω), x ∈ Ω

Then it is clear that un(x) ∈ (0, 1] for all n ∈ N and x ∈ Ω. Thus, un ∈ L2(Ω). For x ∈ ∂Ω,
un(x) = 1 for all n, and if x ∈ Ω, then un(x) → 0 pointwise as n→ ∞, so by the dominated
convergence theorem, we have that

∥un∥2L2(Ω) → 0
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By definition, since T is bounded, there must exist some C > 0 such that

∥Tun∥L2(∂Ω) ≤ C∥un∥L2(Ω)

but since un ≡ 1 on ∂Ω, then Tun ≡ 1, so for sufficiently large n we have

∥1∥L2(∂Ω) = ∥Tun∥L2(∂Ω) ≤ C∥un∥L2(Ω) < ∥1∥L2(∂Ω)

a contradiction, so no such T may exist.

Evans 5.10.9

Integrate by parts to prove the interpolation inequality:

∥Du∥L2 ≤ C∥u∥1/2L2 ∥D2u∥1/2L2

for all u ∈ C∞
c (Ω). Assume Ω is bounded, ∂Ω is smooth, and prove the same inequality

for u ∈ H2(Ω) ∩H1
0 (Ω).

Proof. For u ∈ C∞
c (Ω),

∥Du∥2L2 =

�
Ω

|Du|2dx

=

�
∂Ω

u ·Du · ηdS(x)−
�
Ω

u∆udx (int. by parts)

= 0−
�
Ω

u∆udx

≤
�
Ω

|u||∆u|dx (u ∈ Cc(Ω))

≤
�
Ω

|u||D2u|dx (∆u = tr(D2u))

≤ ∥u∥1/2L2 ∥D2u∥1/2L2 (Holder’s inequality)

Now assume u is only in H2(Ω) ∩ H1
0 (Ω). Then since W n,p ⊆ Wm,p for n ≥ m, then we

know that u ≡ 0 on ∂Ω in the trace sense (Trace-zero theorem). Thus, the same calculation
as above holds with the only changes being Du in the weak sense and the integral over the
boundary is zero because of trace-zero.

Evans 5.10.11

Suppose Ω is connected and u ∈ W 1,p(Ω) satisfies

Du = 0 a.e. in Ω

Prove u is constant a.e. in Ω.
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Proof. Let ηϵ be the standard mollifier and define

uϵ := u ∗ ηϵ in Ωϵ

Then since
D[uϵ] = D[u ∗ ηϵ] = Du ∗ ηϵ = 0 ∗ ηϵ = 0 in Ωϵ

Since uϵ is smooth, then uϵ must be constant a.e. in Ωϵ. Moreover since uϵ → u a.e., then u
must also be constant a.e. in Ωϵ. Thus, taking ϵ→ 0 gives u constant a.e. in Ω.

Evans 5.10.14

Verify that if n > 1, the unbounded function u = log log
(
1 + 1

|x|

)
belongs to W 1,n(Ω),

for Ω = B1(0).

Proof. We first calculate

uxi
=

1

ln(1 + 1/|x|)
1

1 + 1/|x|
−1

|x|2
xi
|x|

=
1

ln(1 + 1/|x|)
−xi

|x|+ 1

1

|x|2

|Du| = 1

ln(1 + 1/|x|)
−1

|x|+ 1

1

|x|

We’ll first show that Du ∈ Ln(B1(0)). Indeed,

∥Du∥Ln(B(0,1)) =

�
B(0,1)

[(
1

ln(1 + 1
|x|)

)(
1

|x|+ 1

)
1

|x|

]n
dx

=

� 1

0

�
∂B(0,r)

1

lnn(1 + 1/r)

1

(r + 1)n
1

rn
dS(x)dr (polar coordinates)

=

� 1

0

1

lnn(1 + 1/r)

1

(r + 1)n
1

rn
(nα(n)rn−1)dr

= nα(n)

� 1

0

1

lnn(1 + 1/r)

1

(r + 1)n
1

r
dr

≤ nα(n)

� 1

0

1

lnn(1 + 1/r)

1

r
dr ( 1

r+1
≤ 1)

= nα(n)

� ∞

ln(2)

1

lnn(1 + 1/r)

1

r
r(1 + r)du

{
u = ln(1 + 1/r)

dr = −r(1 + r)du

= nα(n)

� ∞

ln(2)

1

un

(
1 +

1

eu − 1

)
du

< nα(n)

� ∞

ln(2)

1

un
du

<∞ (since n > 1)

78



Thus, Du ∈ Ln(Ω). Next, we have that

∥u∥Ln(B(0,1)) =

�
B(0,1)

∣∣∣∣ln(ln(1 + 1

|x|

))∣∣∣∣n
= nα(n)

� 1

0

rn−1

∣∣∣∣ln(ln(1 + 1

r

))∣∣∣∣n dr (polar coordinates)

= nα(n)

� ∞

ln(2)

rn−1

∣∣∣∣ln(1 + 1

r

)∣∣∣∣n dr
= nα(n)

� ∞

ln(2)

rn−1

∣∣∣∣ln(1 + 1

r

)∣∣∣∣n r(1 + r)du

{
u = ln(1 + 1/r)

dr = −r(1 + r)du

= nα(n)

� ∞

ln(2)

(
1

eu − 1

)n

un
(
1 +

1

eu − 1

)
du

≤ 2

� ∞

ln(2)

(
u

eu − 1

)n

du ( 1
eu−1

≤ 2)

≤ 2

� ∞

ln(2)

(
u

eu − 1
2
eu

)n

du

≤ 2n+1

� ∞

ln(2)

un

enu
du

<∞ (Integration by parts n times)

Thus, u ∈ Ln(Ω) as well. Finally, we want to confirm that Du is indeed the weak derivative
of u, but we know that u is pointwise differentiable in the classical sense away from x = 0,
so for ϕ ∈ C∞

c (Ω), observe that

�
Ω\Bϵ(0)

uϕ′dx = −
�
Ω\Bϵ(0)

Duϕdx+

�
∂Bϵ(0)

uϕdS(x) +

�
∂Ω

uϕdS(x)

= −
�
Ω\Bϵ(0)

Duϕdx+

�
∂Bϵ(0)

uϕdS(x) (since ϕ ∈ Cc(Ω))

Taking the last integral, we see that

�
∂Bϵ(0)

uϕdS(x) =

�
∂Bϵ(0)

ln

(
ln

(
1 +

1

|x|

))
ϕ(x)dS(x)

≤ ∥ϕ∥L∞(∂Bϵ(0))

�
∂Bϵ(0)

ln

(
1 +

1

|x|

)
dS(x)

= ∥ϕ∥L∞(∂Bϵ(0))nα(n) ln

(
1 +

1

ϵ

)
ϵn−1

and since n > 1 and we know that

lim
ϵ→0+

ϵ ln

(
1 +

1

ϵ

)
→ 0 (by L’hopital’s)
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then we may take ϵ→ 0+ to find �
Ω

uϕ′dx = −
�
Ω

Duϕdx

Evans 5.10.15

Fix α > 0 and let Ω = B1(0). Show that there exists a constant C, depending only on
n and α, such that �

Ω

u2dx ≤ C

�
U

|Du|2dx

provided
| {x ∈ Ω : u(x) = 0} | ≥ α u ∈ H1(Ω)

Proof. Using Poincare’s inequality, we have

C

�
Ω

|Du|2dx ≥
�
Ω

(u− (u)Ω)
2dx

=

�
Ω

u2 − 2u(u)Ω + (u)2Ωdx

=

�
Ω

u2 − u(u)Ωdx− (u)Ω

�
Ω

udx+ (u)2Ω|Ω|

=

�
Ω

u2 − u(u)Ωdx− (u)Ω
|Ω|
|Ω|

�
Ω

udx+ (u)2Ω|Ω|

=

�
Ω

u2 − u(u)Ωdx− |Ω|(u)2Ω + (u)2Ω|Ω|

=

�
Ω

u2 − u(u)Ωdx

Next, we have that�
u(u)Ωdx =

1

|Ω|

(�
Ω

udx

)2

≤ 1

|Ω|
∥1∥2L2({x∈Ω:u(x)̸=0})∥u∥2L2({x∈Ω:u(x)̸=0}) (Holder’s ineq.)

≤ |Ω| − α

|Ω|
∥u∥2L2({x∈Ω:u(x)̸=0}) (measure of support of u)

=
|Ω| − α

|Ω|
∥u∥2L2(Ω) (since u = 0 outside of its support)

Thus, combining both results,

C

�
Ω

|Du|2dx ≥
�
Ω

u2dx− |Ω| − α

|Ω|
∥u∥2L2(Ω)

=

(
1− |Ω| − α

|Ω|

)
∥u∥2L2(Ω)

and since α ≤ |Ω|, we may divide it over and we are done.
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Evans 5.10.17

(Chain rule) Assume F : R → R is C1, with F ′ bounded. Suppose Ω is bounded and
u ∈ W 1,p(Ω) for some 1 ≤ p ≤ ∞. Show

v := F (u) ∈ W 1,p(Ω) and vxi
= F ′(u)uxi

for i = 1, . . . , n

Proof. We’ll first show that v ∈ Lp(Ω). Let (um) ⊂ C∞(Ω) be a smooth sequence approxi-
mating u. Then

∥v∥Lp(Ω) = ∥F (u)∥Lp(Ω) ≤ ∥F (u)− F (um)∥Lp(Ω) + ∥F (um)∥Lp(Ω)

=

(�
Ω

|F (u)− F (um)|p
)1/p

+ ∥F (um)∥Lp(Ω)

≤
(�

Ω

Cp|u− um|p
)1/p

+ ∥F (um)∥Lp(Ω) (F Lipschitz)

= C∥u− um∥Lp(Ω) + ∥F (um)∥Lp(Ω)

<∞

with the last inequality holding since um → u in Lp and F ∈ C1(R), with Ω bounded.

Next, we’ll show that vxi
= F ′(u)uxi

. Using smooth approximation (as shown above in
the Lipschitz argument), we know that

F (um) → F (u) = v in Lp(Ω)

Next, we have that

∥F ′(um)[um]xi
− F ′(u)uxi

∥Lp(Ω) = ∥F ′(um)[um]xi
− F ′(um)uxi

+ F ′(um)uxi
− F ′(u)uxi

∥Lp(Ω)

≤ ∥F ′(um)([um]xi
− uxi

)∥Lp + ∥(F ′(um)− F ′(u))uxi
∥Lp

≤ ∥F ′∥L∞(um(Ω)∥[um]xi
− uxi

∥Lp + ∥(F ′(um)− F ′(u))uxi
∥Lp

→ 0

where the first integral goes to 0 by W 1,p convergence and the second goes to 0 by the
dominated convergence theorem since F ′ ∈ C(R). Thus, F (um) → F (u) and F ′(um)[um]xi

→
F ′(u)uxi

in Lp(Ω) so by the uniqueness of the weak derivative, we must have that

[F (u)]xi
= F ′(u)uxi

for a.e. x ∈ Ω

Last, Dv = F ′(u)Du ∈ Lp(Ω) since F ′ ∈ C(u(Ω)) and Du ∈ Lp(Ω).
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Evans 6.6.2

Let

Lu = −
n∑

i,j=1

(
aijuxi

)
xj
+ cu

Prove that there exists a constant µ > 0 such that the corresponding bilinear form
B[·, ·] satisfies the hypothesis of the Lax-Milgram theorem, provided c(x) ≥ −µ for all
x ∈ Ω.

Proof. We will first prove that there exists α > 0 such that

|B[u, v]| ≤ α∥u∥H1
0 (Ω)∥v∥H1

0 (Ω)

for u, v ∈ H1
0 (Ω). Indeed,

|B[u, v]| =

∣∣∣∣∣
�
Ω

−
n∑

i,j=1

(
aijuxi

)
xj
v + cuv dx

∣∣∣∣∣
=

∣∣∣∣∣
�
Ω

n∑
i,j=1

aijuxi
vxj

+ cuv dx

∣∣∣∣∣ (int. by parts)

≤ sup
1≤i,j≤n

∥aij∥∞
�
Ω

|Du||Dv|dx+ ∥c∥∞
�
Ω

|u||v|dx (aij, c bounded)

≤ α (∥DuDv∥L1 + ∥uv∥L1) (take α max)

≤ α (∥Du∥L2∥Dv∥L2 + ∥u∥L2∥v∥L2) (Holder’s ineq.)

≤ α∥u∥H1
0
∥v∥H1

0
(since ∥u∥L2 , ∥Du∥L2 ≤ ∥u∥H1

0
)

Next, we’ll show that
β∥u∥2H1

0 (Ω) ≤ B[u, u]

for a certain µ > 0. By uniform ellipticity, there exists θ > 0 such that

θ

�
Ω

|Du|2dx ≤
�
Ω

n∑
i,j=1

aijuxi
uxj

= B[u, u]−
�
Ω

cu2dx (int. by parts on B[u, u])

≤ B[u, u] + µ

�
Ω

u2dx (c(x) ≥ −µ)

≤ B[u, u] + Aµ

�
Ω

|Du|2dx (Estimate on W k
0 (Ω))

(θ − Aµ)

�
Ω

|Du|2dx ≤ B[u, u]
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Choosing 0 < µ < θ
A
gives us θ − Aµ > 0 and using the estimate on W k

0 (Ω) again gives us
that

β∥u∥2H1
0
≤ θ − Aµ

2A

�
Ω

u2dx+
θ − Aµ

2

�
Ω

|Du|2dx ≤ (θ − Aµ)

�
Ω

|Du|2dx ≤ B[u, u]

where β = min
{

θ−Aµ
2A

, θ−Aµ
2

}
.

Evans 6.6.3

A function u ∈ H2
0 (Ω) is a weak solution of this boundary-value problem for the

biharmonic equation {
∆2u = f in Ω

u = ∂u
∂ν

= 0 on ∂Ω

provided �
Ω

∆u∆vdx =

�
Ω

fvdx

for all v ∈ H2
0 (Ω). Given f ∈ L2(Ω), prove that there exists a unique weak solution

for the biharmonic equation.

Proof. In order to invoke Lax-Milgram, we’ll prove that the differential operator

Lu = −∆2u

satisfies its hypothesis.

1. Observe that

|B[u, v]| =
∣∣∣∣�

Ω

−∆2uvdx

∣∣∣∣
=

∣∣∣∣�
Ω

∆u∆v

∣∣∣∣ (int. by parts and ∂u
∂ν

= 0 on ∂Ω)

≤
�
Ω

|∆u∆v|dx

≤ ∥∆u∥L2(Ω)∥∆v∥L2(Ω) (Holder’s ineq.)

≤ ∥u∥H2
0 (Ω)∥v∥H2

0 (Ω) (since ∥u∥L2 , ∥Du∥L2 , ∥∆u∥L2 ≤ ∥u∥H2
0
)

2. Next, we first observe that

∥u∥2L2(Ω) ≤ C1∥Du∥L2(Ω)

= C

�
Ω

−u∆udx (int. by parts)

≤ C∥u∥L2(Ω)∥∆u∥L2(Ω) (Holder’s ineq.)

∥u∥L2(Ω) ≤ C∥∆u∥H2
0 (Ω)
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followed by

∥Du∥2L2(Ω) ≤ ∥u∥L2(Ω)∥∆u∥L2(Ω)

≤ C∥Du∥L2(Ω)∥∆u∥L2(Ω) (estimate on W 1,p
0 )

∥Du∥L2(Ω) ≤ C∥∆u∥L2(Ω)

Thus, we have that

∥∆u∥2L2(Ω) ≥
1

C
∥Du∥2L2(Ω) and ∥∆u∥2L2(Ω) ≥

1

C
∥u∥2L2(Ω)

Thus, we have

B[u, u] = ∥∆u∥2L2 = 3

(
1

3

)
∥∆u∥2L2 ≥

1

3
∥∆u∥2L2 +

1

3C

(
∥Du∥2L2 + ∥u∥2L2

)
≥ β∥u∥H2

0 (Ω)

by letting β = min{1/3, 1/3C}.

Evans 6.6.4

Assume Ω is connected. A function u ∈ H1(Ω) is a weak solution of Neumann’s
problem {

−∆u = f in Ω
∂u
∂ν

= 0 on ∂Ω

if �
Ω

Du ·Dvdx =

�
Ω

fvdx

for all v ∈ H1(Ω). Suppose f ∈ L2(Ω). Prove that Neumann’s problem has a weak
solution iff �

Ω

fdx = 0

Proof Outline. 1. Forward direction is trivial, just choose v ≡ 1.

2. For the backward direction, we want to invoke Lax-Milgram, but constant functions
break the B[u, u] ≥ β∥u∥2H1 condition. Other condition is trivial.

3. With the fact that the average of constant functions are themselves, we restrict H1 to
just those that have average equal to zero.

4. Prove this is a closed subset of H1 under the same norm, thus making it a Hilbert
space as well

5. Use Poisson’s ineq. to split ∥Du∥2L2 to find ∥u∥2H1
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6. Lax-Milgram gives a solution on the restricted Hilbert space. Extend it to Ω by using
the hypothesis

�
fdx = 0.

■

Proof. (⇒) In the forward direction, since we know that�
Ω

Du ·Dvdx =

�
Ω

fvdx for all v ∈ H1(Ω)

then we simply choose v ≡ 1 ∈ H1(Ω) so that�
Ω

fdx =

�
Ω

Du · 0dx = 0

(⇐) Our goal now is to invoke Lax-Milgram. We first define Lu = −∆u and using integra-
tion by parts, we see that

B[u, v] =

�
Ω

Luvdx =

�
Ω

−∆uvdx =

�
Ω

Du ·Dvdx (since ∂u
∂ν

= 0)

Thus, for boundedness, we have

|B[u, v]| ≤
�
Ω

|Du||Dv|dx ≤ ∥Du∥L2(Ω)∥Dv∥L2(Ω) ≤ ∥u∥H1(Ω)∥v∥H1(Ω)

Next, for the second condition of Lax-Milgram, we want to show that

B[u, u] ≥ β∥u∥2H1(Ω)

for some β > 0. However, we notice that if u is a constant function u ≡ λ ∈ R, then

B[u, u] =

�
Ω

|Dλ|2dx = 0 but ∥λ∥H1(Ω) = |Ω|λ > 0 for λ ̸= 0

This tells us thatH1(Ω) is too large of a set for the second condition to hold everywhere.
Thus, we want to consider a restriction on H1(Ω). Keeping in mind that the average
of a constant function is itself, we define

H̃ = {u ∈ H1(Ω) : (u)Ω = 0}

equipped with the H1-norm. To show that H̃ is also a Hilbert space, we will use the
fact that closed subsets of Hilbert spaces are also Hilbert spaces. Indeed, let (un) ⊂ H̃
converge to some u. Then ∣∣∣∣�

Ω

udx

∣∣∣∣ = ∣∣∣∣�
Ω

u− undx+

�
Ω

un

∣∣∣∣
=

∣∣∣∣�
Ω

u− undx

∣∣∣∣ (since (un)Ω = 0)

≤
√

|Ω|∥u− un∥L2(Ω)

≤
√

|Ω|∥u− un∥H1(Ω)

→ 0
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so we must have that �
Ω

udx = 0

or (u)Ω = 0, so u ∈ H̃. Thus, H̃ is a Hilbert space. Then we may see that

B[u, u] =

�
Ω

|Du|2dx

= ∥Du∥2L2(Ω)

=
1

2
|Du|2L2(Ω) +

1

2
|Du|2L2(Ω)

≥ 1

2
|Du|2L2(Ω) + C∥u∥L2(Ω) (Poincare’s ineq.)

≥ β∥u∥H1(Ω)

Hence, by Lax-Milgram, we have the existence of a weak solution ũ ∈ H̃ such that

B[u, v] =

�
Ω

fvdx for all v ∈ H̃

We now want to extend this to all of H1(Ω) so let v ∈ H1(Ω). We know that v−(v)Ω ∈
H̃, so

B[ũ, v] =

�
Ω

Dũ ·Dvdx

=

�
Ω

Dũ ·D(v − (v)Ω)dx+

�
Ω

Dũ ·D(v)Ωdx

=

�
Ω

Dũ ·D(v − (v)Ω)dx

= f(v − (v)Ω)dx (since (v − (v)Ω) ∈ H̃)

=

�
Ω

fvdx− (v)Ω

�
Ω

fdx

=

�
Ω

fvdx (by hypothesis)

= (f, v)

Evans 6.6.10

Assume Ω is connected. Use (a) energy methods and (b) the maximum principle to
show that the only smooth solutions of the Neumann boundary-value problem{

−∆u = 0 in Ω
∂u
∂ν

= 0 on ∂Ω
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are u ≡ C, for some constant C ∈ R.

Proof.

(a) Using an energy method, observe that

0 =

�
Ω

−u∆udx =

�
∂Ω

uDu · νdS(x)−
�
Ω

−Du ·Dudx

= 0 +

�
Ω

|Du|2dx (since ∂u
∂ν

= 0)

=

�
Ω

|Du|2dx

Thus, we have that Du = 0 a.e. in Ω. Since Ω is connected, we use Evans 5.10.11
to conclude that u is constant a.e. in Ω which by smoothness of u, implies that u is
constant in Ω.

(b) Suppose u is nonconstant and wlog, assume u > 0 somewhere in Ω. Then by the
smoothness of u, we know that u attains its maximum at some point x0 ∈ Ω.

� If x0 ∈ Ω, then since Lu = −∆u = 0 and Ω is open, bounded and connected, then
the strong maximum principle implies that u must actually be constant.

� If x0 ∈ ∂Ω, then since Ω is open and bounded, Ω satisfies the interior ball condition
at x0. Next, we know that u is smooth up to the boundary, so by Hopf’s lemma,
we must have that

∂u

∂ν
(x0) > 0

which contradicts that ∂u
∂ν

= 0 on ∂Ω.

Thus, in all cases, we must have that u is constant.
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