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1 Theorems and Definitions

σ-Algebras

� Def. (Algebra) An algebra of set on X (̸= ∅)
is a nonempty collection A of subsets ofX that
is closed under finite unions and complements.

� Def. (σ-algebra) A σ-algebra is an algebra
that is closed under countable unions.

� Def. (Borel σ-algebra) If X is a metric or
topological space, then the σ-algebra gener-
ated by the family of open sets in X is called
the Borel σ-algebra on X and is denoted BX .

� Def. (product σ-algebra) Let {Xα}α∈A be
an indexed collection of nonempty sets. Let
X =

∏
α∈AXα and πα : X → Xα the coordi-

nate maps. IfMα is a σ-algebra onXα for each
α, the product σ-algebra on X is the σ-algebra
generated by the set

{π−1
α (Eα) : Eα ∈ Mα, α ∈ A}

Measures

� Def. (Measure) Let X be a nonempty set
equipped with σ-algebra, M. A measure on
(X,M) is a function µ : M → [0,∞] such
that

(i) µ(∅) = 0

(ii) If (Ej)
∞
1 is a sequence of disjoint sets

in M, then µ(
⋃∞

1 Ej) =
∑∞

1 µ(Ej).
(Countable additivity).

� Thm 1.8 (Properties of measures).

Let (X,M, µ) be a measure space.

(a) (Monotonicity) If E,F ∈ M and E ⊆ F ,
then µ(E) ≤ µ(F ).

(b) (Subadditivity) If (Ej)
∞
1 ⊂ M, then

µ(
⋃∞

1 Ej) ≤
∑∞

1 µ(Ej).

(c) (Continuity from below) If (Ej)
∞
1 is

an increasing sequence in M, then
µ(
⋃∞

1 Ej) = limj→∞ µ(Ej).

(d) (Continuity from above) If (Ej)
∞
1 is a de-

creasing sequence in M and µ(E1) < ∞,
then µ(

⋂∞
1 Ej) = limj→∞ µ(Ej).

� (Types of measures) If µ(X) < ∞ then µ is
called a finite measures. If there exists a se-
quence (Ej)

∞
1 ⊂ M such that X =

⋃∞
1 Ej

and µ(Ej) < ∞ for all j ∈ N, then µ is called
a σ-finite measure. If for each E ∈ M with
µ(E) = ∞, there exists F ∈ M with F ⊂ E
and 0 < µ(F ) < ∞, then µ is called a semifi-
nite measure.

� Def. (Complete measure) A measure, µ,
whose domain (the σ-alg.) contains all sub-
sets of null-sets is called complete. Null-sets
are sets, N ∈ M such that µ(N) = 0.

� Thm 1.9 Suppose (X,M, µ) is a measure
space. Let N = {N ∈ M : µ(N) = 0}
and M = {E ∪ F : E ∈ M and F ⊂
N for some N ∈ N}. Then M is a σ-algebra,
and there is a unique extension µ of µ to a
complete measure on M. The measure µ is
called the completion of µ and M is called the
completion of M w.r.t. µ.

� Def. (Outer measure) An outer measure on
X( ̸= ∅) is a function µ∗ : P(X) → [0,∞] that
satisfies

(i) µ∗(∅) = 0

(ii) µ∗(A) ≤ µ∗(B) if A ⊆ B

(iii) µ∗(
⋃∞

1 Aj) ≤
∑∞

1 µ∗(Aj).

� Def. (µ∗-measurable sets) A set A ⊆ X is
called µ∗-measurable if

µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) for all E ⊆ X

� Thm 1.11 (Caratheodory’s Theorem) If
µ∗ is an outer measure on X, the collection
M of µ∗- measurable sets forms a σ-algebra,
and the restriction of µ∗ to M is a complete
measure.

� Def. (premeasure) If A is an algebra on X,
then a function µ0 : A → [0,∞] is called a
premeasure if µ0(∅) = 0 and µ0 is countably
additive on disjoint sets.

� (Outer measure induced by premeasure, 1.12)

µ∗(E) = inf {
∑∞

1 µ0(Aj) : Aj ∈ A, E ⊆
⋃∞

1 Aj}
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� Prop 1.13 If µ0 is a permeasure on A and µ∗

is an induced outer measure, then µ∗|A = µ0

and every set in A is µ∗-measurable.

� (Caratheodory’s contruction of measures)
Start with a premeasure µ0 on an algebra A,
use µ0 to induce an outer measure µ∗, and then
extend µ0 to a complete measure µ = µ∗|M de-
fined on the σ-algebra, M, of µ∗-measurable
sets.

� Def. (Lebesgue-Stieltjes measure) Let F :
R → R be an increasing, right continuous func-
tion. Then there is a unique measure on BR
(Borel σ-alg. on R) such that the measure of
any interval (a, b) is simply its length b− a for
all a, b ∈ R. Caratheodory’s contruction may
then be applied to extend this measure to a
complete measure, denoted µF , whose domain,
Mµ, is strictly larger than BR. This complete
measure is called the Lebesgue-Stieltjes mea-
sure associated to F and

µF (E) = inf

{
∞∑
1

[F (bj)− F (aj)] :

E ⊆
∞⋃
1

(aj, bj)

}

� Prop 1.20 If E ∈ Mµ and µ(E) < ∞, then
for every ϵ > 0 there is a set A that is a finite
union of open intervals such that µ(E△A) < ϵ.

� Def. (Lebesgue measure) The Lebesgue mea-
sure is the complete measure µF associated to
the function F (x) = x.We denote this measure
by m : L → [0,∞] where L denotes the set
of Lebesgue measurable sets (m-measurable).
Note BR ⊂ L strictly.

The most significant properties of the
Lebesgue measure are its invariance under
translations and simple behavior under dila-
tion.

Measurable Functions

� Def. (Measurable functions) Let (X,M) and
(Y,N ) be measure spaces. Then a mapping
f : X → Y is called (M,N )-measurable or

just measurable if f−1(E) ∈ M for all E ∈ N .
This is similar to the definition of continuous
mappings between topological spaces. If N is
a σ-algebra generated by some set E , then we
may simply show f−1(E) ∈ M for all E ∈ E .
For complex-valued functions on X, we
say they are measurable if it is (M,BC)-
measurable. Such functions have nice closure
properties. If f, g : X → C are measurable,
then so are f+g, fg, max{f, g} and min{f, g}.

� Def. (simple function) A simple function on
X is a finite linear combination of characteris-
tic functions of sets in M with complex coeffi-
cients.

f =
n∑
1

zjχEj

where Ej = f−1({zj}) and range(f) = {zj :
1 ≤ j ≤ n}. This is called the standard repre-
sentation.

� Thm 2.10 If f : X → C is measurable, there
is a sequence (ϕn)

∞
1 of simple functions such

that 0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |f |, ϕn → f
pointwise, and ϕn → f uniformly on any set
on which f is bounded.

� Prop 2.11 The following are true iff µ is com-
plete:

(a) If f is measurable and f = g µ-a.e., then
g is measurable.

(b) If fn is measurable for n ∈ N and fn → f
µ-a.e., then f is measurable.

Integration

� (Integration of nonnegative functions) Define
the space L+(X) to the set of measurable non-
negative functions on X. If ϕ is a simple func-
tion in L+(X) with standard representation
ϕ =

∑n
1 ajχEj

, then define the integral of ϕ
w.r.t. µ by ∫

X

ϕ dµ =
n∑
1

ajµ(Ej).

and for A ∈ M,
∫
A
ϕ dµ =

∫
X
ϕχA dµ. Some

general properties:

(a) If c ≥ 0,
∫
cϕ = c

∫
ϕ.
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(b)
∫
(ϕ+ ψ) =

∫
ϕ+

∫
ψ

(c) If ϕ ≤ ψ, then
∫
ϕ ≤

∫
ψ.

(d) The map A 7→
∫
A
dµ is a measure on M.

Now, for any f ∈ L+(X), we define its integral
by ∫

f dµ = sup

{∫
ϕ dµ :0 ≤ ϕ ≤ f,

ϕ is simple}

� (Integration of complex-valued functions) For
a real-valued function, f , if f+, f− are its pos-
itive and negative parts and at least one of∫
f+ and

∫
f− is finite, then we define

∫
f =∫

f+−
∫
f−. If both

∫
f+,

∫
f− are finite, then

we say f is integrable. Note |f | = f++f− and
f = f+ − f−.

Next, for a complex-valued function, f , we say
that f is integrable on a set E if

∫
E
|f | < ∞

and define∫
f =

∫
Re f + i

∫
Im f

Note that the space of complex-valued inte-
grable functions is a complex vector space and
the integral is a linear functional on it. The
space if integrable complex-valued functions
on X is denoted L1(X) or L1(µ). Two func-
tions f, g are equivalent in L1(X) is f = g µ-
a.e. L1(X) is also a metric space with distance∫
|f − g|dµ.

� Thm 2.26 If f ∈ L1(µ) and ϵ > 0, there is an
integrable simple function ϕ =

∑n
1 ajχEj

such
that

∫
|f − ϕ|dµ < ϵ. That is, the integrable

simple functions are dense in L1 in its metric.

� Cor 3.6 If f ∈ L1(µ), for every ϵ > 0 there
exists δ > 0 such that |

∫
E
fdµ| < ϵ whenever

µ(E) < δ.

� Thm 2.14 (The Monotone Convergence
Theorem) If (fn)

∞
1 ⊂ L+ such that fj ≤ fj+1

for all j, and f = limn→∞(= supn fn), then∫
f = limn→∞

∫
fn

� Prop 2.16 If f ∈ L+ then
∫
f = 0 iff f = 0

a.e.

� Lemma 2.18 (Fatou’s Lemma) If (fn)
∞
1 is

any sequence in L+, then∫
(lim inf fn) ≤ lim inf

∫
fn.

� Thm 2.24 (Dominated Convergence The-
orem) Let (fn) ⊆ L1(X) such that

(a) fn → f µ-a.e.

(b) There exists g ∈ L1, g ≥ 0 such that
|fn| ≤ g µ-a.e. for all n

Then f ∈ L1 and
∫
X
f = limn→∞

∫
X
fn.

� Thm 2.28. (Relation between the Lebesgue
and Riemann integrals) Let f be a bounded
real-valued function on [a, b].

(a) If f is Riemann integrable, then f is

Lebesgue measurable (and hence

integrable on [a, b] since it is bounded),
and ∫ b

a

f(x)dx =

∫
[a,b]

f dm.

(b) f is Riemann integrable iff the set of
points x ∈ [a, b] such that f is discon-
tinuous at x has Lebsegue measure zero.

� Thm 2.26 If f ∈ L1(m) then there is a
continuous function g that vanishes outside a
bounded interval such that ∥f − g∥1 < ϵ

� Thm 2.27 (Differentiation under the integral
sign) Suppose that f : X× [a, b] → C and that
f(·, t) : X → C is integrable for each t ∈ [a, b].
Let F (t) =

∫
X
f(x, t)dµ(x).

(a) Suppose that there exists g ∈ L1(µ) such
that |f(x, t)| ≤ g(x) for all x, t. If

limt→t0 f(x, t) = f(x, t0) for every x, then
limt→t0 F (t) = F (t0); in particular, if
f(x, ·) is continuous for each x, then F
is continuous.

(b) Suppose that ∂f/∂t exists and there is
a g ∈ L1(µ) such that |(∂f/∂t)(x, t)| ≤
g(x) for all x, t. Then F is differentiable
and F ′(x) =

∫
(∂f/∂t)(x, t)dµ(x).
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Modes of Convergence

� Def. (pointwise convergence) If (fn)
∞
1 is a

sequence of measurable complex-valued func-
tions then fn → f pointwise if limn→∞ fn(x) =
f(x) for every x ∈ X. We may also define
pointwise µ-a.e. convergence similarly.

� Def. (uniform convergence) (fn)
∞
1 converges

to f uniformly if ∥fn− f∥∞ = supx∈X |fn(x)−
f(x)| → 0.

� Def. (Convergence in measure) (fn)
∞
1 con-

verges to f in measure if for every ϵ > 0

µ({x ∈ X : |fn(x)− f(x)| ≥ ϵ}) → 0

as n→ ∞.

� Def. (Convergence in Lp space) (fn)
∞
1 con-

verges to f if ∥fn − f∥p = (
∫
|fn − f |p)1/p → 0

as n→ ∞.

� (Relationships between modes of convergence)

1. Uniform conv. =⇒ Pointwise conv.
=⇒ µ-a.e. conv.

2. If fn → f in L1 then fn → f in measure

3. If fn → f in L1 then there is a subse-
quence of fn that converges to f µ-a.e.

� Thm 2.33 (Egoroff’s Theorem) Suppose
that µ(X) < ∞ and (fn)

∞
1 and f are all mea-

surable complex-valued functions on X such
that fn → f µ-a.e. Then for every ϵ > 0 there
exists E ⊂ X such that µ(E) < ϵ and fn → f
uniformly on Ec.

� Exc 2.44 (Lusin’s Theorem) If f : [a, b] →
C is Lebesgue measurable and ϵ > 0, there is
a compact set E ⊆ [a, b] such that µ(Ec) < ϵ
and f |E is continuous.

Product Measures

� Thm 2.37 (The Fubini-Tonelli Theorem)
Suppose that (X,M, µ) and (Y,N , ν) are σ-
finite measure spaces.

(a) (Tonelli) If f ∈ L+(X×Y ), then the func-
tions g(x) =

∫
fxdν and h(y) =

∫
f ydµ

are in L+(X) and L+(Y ), respectively,
and∫
fd(µ× ν) =

∫ [∫
f(x, y)dν(y)

]
dµ(x)

=

∫ [∫
f(x, y)dµ(x)

]
dν(y)

(b) (Fubini) If f ∈ L1(µ×ν), then fx ∈ L1(ν)
for a.e. x ∈ X, f y ∈ L1(µ) for a.e. y ∈ Y ,
the a.e.-defined functions g(x) =

∫
fxdν

and h(y) =
∫
f ydµ are in L1(µ) and L1(ν)

respectively and the integral equality of
Tonelli’s holds as well.

� Def. (Lebesgue measure on Rn) The Lebesgue
measure on Rn denoted mn is the product of
Lebesgue measure on R with itself n times on
the n times product space of BR or L.

Differentiation of Measures

� Def. (signed measure) A signed measure on
(X,M) is a function ν : M → [−∞,∞] such
that ν(∅) = 0, ν can only map to either +∞
or −∞ but not both, and if (Ej)

∞
1 ⊂ M is dis-

joint, then ν(
⋃∞

1 Ej) =
∑∞

1 ν(Ej) where this
sum converges absolutely if ν(

⋃∞
1 ) <∞.

Every signed measure ν can either be repre-
sented as the difference between two positive
measures µ1 − µ2 or if µ is a measure on M
and f : X → [−∞,∞] is a measurable func-
tion such that at least one of

∫
f+dµ or

∫
f−dµ

is finite, then defining ν(E) =
∫
E
fdµ also pro-

duces a signed measure.

� Thm 3.3 (The Hahn Decomposition The-
orem) If ν is a signed measure on (X,M),
there exists a positive set P and a negative set
N for ν such that P ∪ N = X, P ∩ N = ∅.
If another such pair P ′, N ′ exists, then P△P ′

and N△N ′ are null for ν.

� Def. (mutually singular measures) Two signed
measures µ, ν on (X,M) are mutually singular
if there exists E,F ∈ M such that E∩F = ∅,
E ∩ F = X and E is null for µ and F is null
for ν. We denote this by µ ⊥ ν.
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� Thm 3.4 (The Jordan Decomposition
Theorem) If ν is a signed measure, there ex-
ists unique positive measures ν+, ν− such that
ν = ν+ − ν− and ν+ ⊥ ν−.

Def. (total variation) The total variation of a
signed measure ν is |ν| = ν+ + ν−.

� Def. (absoluteley continuous measures) Sup-
pose ν is a signed measure and µ is a positive
measure on (X,M). We say that ν is abso-
lutely continuous w.r.t. µ if ν(E) = 0 when-
ever µ(E) = 0. We denote this by ν ≪ µ.

� Thm 3.8 (The Lebesgue-Radon-
Nikodym Theorem) Let ν be a σ-finite
signed measure and µ a σ-finite positive mea-
sure on (X,M). There exists a unique σ-finite
signed measure λ, ρ on (X,M) such that

λ ⊥ µ, ρ≪ µ, ν = λ+ ρ.

Moreover, there is an extended µ-integrable
function f : X → R such that

dρ = fdµ⇔ ρ(E) =

∫
E

fdµ, ∀E ∈ M

and any two such functions are equal µ-a.e.
The decomposition ν = λ + ρ is called the
Lebesgue decomposition of ν w.r.t. µ. When
ν ≪ µ, we have that dν = fdµ for some f and
this f is called the Radon-Nikodym derivatve
of ν w.r.t. µ. and is denoted f = dν/dµ.

� Def. (Hardy-Littlewood maximal function).
Let f ∈ L1

loc, i.e. that f is integrable on any
bounded measurable subset of Rn, then

H(f)(x) = sup
r>0

1

m(Br(x))

∫
Br(x)

|f(y)|dy

� Def. (Lebesgue set) For f ∈ L1
loc, the

Lebesgue set, Lf is defined to be the follow-
ing:{
x : lim

r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dy = 0

}

� Def. (The Lebesgue Differentiation The-
orem) Suppose f ∈ L1

loc. For every x the

Lebesgue set of f , in particular, for almost ev-
ery x, we have

lim
r→0

1

m(Er)

∫
Er

|f(y)− f(x)|dy = 0

and

lim
r→0

1

m(Er)

∫
Er

f(y)dy = f(x)

for every family {Er}r>0 that shrinks nicely to
x. {Er} shrinks nicely to x if Er ⊆ Br(x) for
each r > 0 and there is some constant α inde-
pendent of r such that m(Er) > αm(Br(x)).

� Thm 3.22 Let ν be a regular signed or com-
plex Borel measure on Rn, and let dν = dλ +
fdm be its Lebesgue-Radon-Nikodym repre-
sentation. Then for m-a.e. x ∈ Rn,

lim
r→0

ν(Er)

m(Er)
= f(x)

for every family {Er}r>0 that shrinks nicely to
x. It is particularly useful in application to use
balls centered around x.

Differentiation of functions on R

� Def. (regular measure) A Borel measure ν
on R will be called regular if ν(K) < ∞ for
every compact set K and ν(E) = inf{ν(U) :
U open, E ⊆ U} for every E ∈ BR. A signed
or complex measure will be called regular if its
total variation is regular.

� Def. (total variation of a function) Let F :
R → C. The total variation of F on [a, b] is
defined as

TF ([a, b]) = sup {
∑n

1 |F (xj)− F (xj−1)| : n ∈ N
a = x0 < · · · < xn = b}

� Def. (bounded variation) If TF ([a, b]) < ∞
then F is of bounded variation and we denote
F ∈ BV ([a, b]).

� Def. (absolutely continuous function) A func-
tion F : R → C is called absolutely contin-
uous if for every ϵ > 0 there exists δ > 0
such that for any finite set of disjoint intervals
{(aj, bj)}N1 ,
N∑
1

(bj − aj) < δ =⇒
N∑
1

|F (bj)− F (aj)| < ϵ

8



� Thm 3.35 (The Fundamental Theorem of
Calculus for Lebesgue Integrals) If −∞ < a <
b < ∞ and F : [a, b] → C, the following are
equivalent:

(a) F is absolutely continuous on [a, b].

(b) F (x) − F (a) =
∫ x

a
f(t)dt for some f ∈

L1([a, b],m),

(c) F is differentiable a.e. on [a, b],
F ′ ∈ L1([a, b],m), and F (x) − F (a) =∫ x

a
F ′(t)dt.

Point Set Topology

� Def. (topology) A topology on X is a fam-
ily T of subsets of X that contains ∅ and X
and is closed under arbitrary unions and finite
intersections.

� Def. (neighborhood base) If T is a topology
on X, a neighborhood base for T at x ∈ X is
a family N ⊆ T such that

(i) x ∈ V for all V ∈ N

(ii) If U ∈ T and x ∈ U , there exists V ∈ N
such that x ∈ V and V ⊆ U.

A base for T is a family B ⊆ T that contains
a neighborhood base for T at each x ∈ X.

� Def. (first and second countable) A topolog-
ical space (X, T ) is first countable if there is
a countable neighborhood base for T at every
point of X. The space is second countable if
T has a countable base.

� Def. (separable space) (X, T ) is separable if
X has a countable dense subset. Every second
countable space is separable.

Def. (Hausdorff space) A space is called Haus-
dorff if for all x, y ∈ X, x ̸= y, there are dis-
joint open sets U, V with x ∈ U and y ∈ V.

� Def. (weak topology) The weak topology of a
topological space (X, T ) is the weakest topol-
ogy (the one with the least open sets) under
which every element of X∗ is continuous on X.

� Def. (weak∗ topology) The weak∗ topology
is the weakest topology on X∗ such that the
maps, Tx(ϕ) = ϕ(x) is continuous on X∗ for
any x ∈ X. Convergence in the weak∗ topol-
ogy is essentially pointwise convergence. That
is fn → f iff fn(x) → f(x) for all x ∈ X.

� Def. (nets) To develop a generalization of se-
quences that work well in arbitrary topological
spaces, begin by defining a type of indexed set
called a directed set, which is a set A( ̸= ∅)
equipped with a binary relation ≲ such that

(i) α ≲ α for all α ∈ A.

(ii) if α ≲ β and β ≲ γ then α ≲ γ.

(iii) for any α, β ∈ A there exists γ ∈ A such
that α ≲ γ and β ≲ γ.

A net in a set X is a mapping α 7→ xα from a
directed set A into X. Denote such a mapping
by ⟨xα⟩α∈A. Let X be a topological space and
E a subset ofX. A net ⟨xα⟩α∈A is eventually in
E if there exists α0 ∈ A such that xα ∈ E for
α ≳ α0. A point x ∈ X is a limit of ⟨xα⟩ if for
every neighborhood U of x, ⟨xα⟩ is eventually
in U .

� Def. (local compactness) A topological space
is locally compact if every x ∈ X has a neigh-
borhood whose closure is compact.

� Def. We call locally compact Hausdorff spaces
LCH spaces for short.

� Def. The support of a complex-valued func-
tion f : X → C is defined as

supp(f) := {x ∈ X : f(x) ̸= 0}

then define the following spaces:

1. C(X) = {f : X → C is continuous}

2. BC(X) = {f ∈ C(X) : f bounded}

3. Cc(X) = {f ∈ C(X) : supp(f) compact}

4. C0(X) = {f ∈ C(X) : f vanishes at ∞}

It may be shown that

Cc(X) ⊂ C0(X) ⊂ BC(X) ⊂ C(X)
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� Lemma 4.32 (Urysohn’s Lemma) If X is
an LCH space and K ⊆ U ⊆ X where K
is compact and U is open, there exists f ∈
C(X, [0, 1]) such that f = 1 on K and f = 0
outside a compact subset of U.

� Prop 4.35 If X is an LCH space, then
C0(X) = Cc(X) in ∥ · ∥∞.

Elements of Functional Analysis

� Def. (Banach space) A normed vector space
that is complete w.r.t. the norm metric is
called a Banach space.

� Def. (bounded linear map) A linear map
T : X → Y between two normed vector spaces
is called bounded if there exists C ≥ 0 such
that ∥T (x)∥Y ≤ C∥x∥X for all x ∈ X. If T is
linear then continuity on X and boundedness
on X are equivalent.

� Def. (operator norm) Let L(X, Y ) be the
space of bounded linear maps from X → Y .
Then L(X, Y ) is a vector space and the func-
tion T 7→ ∥T∥ is defined by

∥T∥ = sup
x∈X

∥x∥X=1

∥T (x)∥Y

� Def. (isometry) If T ∈ L(X, Y ), T is called
an isometry if ∥T (x)∥Y = ∥x∥X . An isometry
is injective but not necessarily surjective. It
is, however an isomorphism onto its range (i.e.
bijective and T−1 is bounded).

� Def. (dual space) If X is a vector space over
C, then a linear map from X → C is called
a linear functional. If X is a normed vector
space then the space L(X,C) of bounded lin-
ear functionals on X is called the dual space
of X and is denoted by X∗. X∗ is a Banach
space with its operator norm.

� Thm 5.6 (The Hahn-Banach Theorem)
Let X be a real vector space, ρ a sublinear
functional on X, M a subspace of X, and f
a complex linear functional on M such that
|f(x)| ≤ ρ(x) for all x ∈ M. Then there exists
a complex linear functional F on X such that
|F (x)| ≤ ρ(x) for all x ∈ X and FM = f .

� Thm 5.8 (Consequences of the Hahn-Banach
Thm) Let X be a normed vector space.

(a) If M is a closed subspace of X and x ∈
X\M, there exists f ∈ X∗ such that
f(x) ̸= 0 and f |M = 0.

(b) If x ̸= 0 ∈ X, there exists f ∈ X∗ such
that ∥f∥ = 1 and f(x) = ∥x∥.

(c) The bounded linear functions on X sepa-
rate points.

(d) If x ∈ X, define x̂ : X∗ → C be x̂(f) =
f(x). Then the map x 7→ x̂ is a linear
isometry from X into X∗∗ (the dual of
X∗).

� Thm 5.9 (The Baire Category Theorem)
Let X be a complete metric space.

(a) If (Un)
∞
1 is a sequence of open dense sub-

sets of X, then
⋂∞

1 Un is dense in X

(b) X is not a countable union of nowhere
dense sets, i.e. not meager.

� Def. (meager set) IfX is a topological space, a
set E ⊆ X is called meager if E is a countable
union of nowhere dense sets. A set is called
nowhere dense if its closure has empty inte-
rior (i.e. no point in it can be contained in an
open ball that’s contained in the set). Other-
wise, E is called residual. Intuitively, nowhere
dense sets are naturally very small, so a meager
set still has a sense of smallness, but has nicer
properties than nowhere dense sets. (σ-ideal).

� Thm 5.10 (The Open Mapping Theo-
rem) Let X, Y both be Banach spaces. If
T ∈ L(X, Y ) is surjective, then T is open, i.e.
that T (U) is open in Y whenever U is open in
X.

� Thm 5.12 (The Closed Graph Theorem)
If X, Y are normed vector spaces and T is a
linear map from X → Y , define the graph of
T to be Γ(T ) = {(x, y) ∈ X × Y : y = T (x)}.
Then T is closed if Γ(T ) is a closed subspace
of X × Y .

If X, Y are Banach spaces and T : X → Y is a
closed linear map, then T is bounded.

� Thm 5.13 (The Uniform Boundedness
Principle) Suppose thatX, Y are normed vec-
tor spaces and A is a subset of L(X, Y ).
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(a) If supT∈A ∥T (x)∥Y < ∞ for all x
in some nonmeager subset of X, then
supT∈A ∥T∥ <∞

(b) If X is a Banach space and
supT∈A ∥T (x)∥Y is finite for all x ∈ X,
then supT∈A ∥T∥ <∞.

� Def. (weak convergence) Let X be a normed
vector space. A net ⟨xα⟩α∈A is said to con-
verge weakly to x ∈ X iff f(xα) → f(x) for all
f ∈ X∗.

Hilbert Spaces

� Def. (Hilbert Space) Let H be a complex vec-
tor space. An inner product on H is a map
(x, y) 7→ ⟨x, y⟩ from H×H → C such that

(i) ⟨ax+ by, z⟩ = a ⟨x, z⟩+ b ⟨y, z⟩ for all
x, y, z ∈ H, and a, b ∈ C.

(ii) ⟨y, x⟩ = ⟨x, y⟩
(iii) ⟨x, x⟩ ∈ (0,∞) for all nonzero x ∈ H.

⟨·, ·⟩ induces a norm ∥x∥ =
√

⟨x, x⟩ on H
and if H is complete w.r.t ∥ · ∥ then we say
H is a Hilbert space, a special kind of Ba-
nach space which generalizes finite Euclidean
spaces. Structurally, every Hilbert space looks
like some ℓ2 space (prop 5.30).

� Thm 5.19 (The Schwarz Inequality)

| ⟨x, y⟩ | ≤ ∥x∥∥y∥ for all x, y ∈ H with equal-
ity iff x, y are linearly independent.

� Thm 5.22 (The Parallelogram Law) For all
x, y ∈ H, ∥x+y∥2+∥x−y∥2 = 2(∥x∥2+∥y∥2)

� Thm 5.23 (The Pythagorean Theorem)

If (xj)
n
1 ⊂ H and xj ⊥ xk for j ̸= k, then

∥
n∑
1

xj∥2 =
n∑
1

∥xj∥2

� L2(X,µ) is a Hilbert space with inner prod-
uct ⟨f, g⟩ =

∫
fgdµ. An important special

case of this is obtained by taking µ to be
counting measure on (X,P(X)). Here we de-
note L2(X,µ) be ℓ2(X,µ) the set of functions
f : X → C such that

∑
x∈X |f(x)|2 <∞.

� Thm 5.24 If M is a closed subspace of H,
then H = M ⊕ M⊥; that is , each x ∈ H
can be uniquely expressed as x = y + z where
y ∈ M and z ∈ M⊥. Moreover, y, z are the
unique elements of M,M⊥ whose distance to
x is minimal. Note M⊥ is called the orthogo-
nal complement of M.

� Thm 5.25 (Riesz Representation Theo-
rem for Hilbert Spaces) If f ∈ H∗, there is
a unique y ∈ H such that f(x) = ⟨x, y⟩ for all
x ∈ H.

� Thm 5.26 (Bessel’s Inequality) If {uα}α∈A is
an orthonormal set in H, then for any x ∈ H,∑

α∈A | ⟨x, uα⟩ |2 ≤ ∥x∥2. In particular, the set
{α : | ⟨x, uα⟩ |2 ̸= 0} is countable.

� Thm 5.27 (Parseval’s Identity) If {uα}α∈A
is an orthonormal set in H, the following are
equivalent:

(a) If ⟨x, uα⟩ = 0 for all α ∈ A, then x = 0.

(b) (Parseval’s) ∥x∥2 =
∑

α∈A | ⟨x, uα⟩ |2 for
all x ∈ H

(c) For each x ∈ H, x =
∑

α∈A ⟨x, uα⟩uα,
which converges.

� (Some bounded linear operators) Let H1,H2

be Hilbert spaces.

1. A unitary map is an invertible (inverse is
bounded) map U : H1 → H2 that pre-
serves inner product. Unitary maps are
the true isomorphisms in the category of
Hilbert spaces.

2. Let H be a Hilbert space and T ∈
L(H,H). Then there is a unique T ∗ ∈
L(H,H) called the adjoint of T , such
that ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ H.
Note T is unitary iff T is invertible and
T−1 = T ∗.

3. Let M ⊆ H be a closed subspace of H
and for x ∈ H, define P (x) to be the el-
ement of M such that x − P (x) ∈ M⊥.
If defined so, P ∈ L(H,H) and P ∗ = P,
P 2 = P , range(P ) = M and ker(P ) =
M⊥. P is called the orthogonal projec-
tion onto M.
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Lp Spaces

� Def. (Lp space) We define Lp space by the set
of measurable functions f : X → C such that
∥f∥p <∞ where

∥f∥p =
[∫

X

|f |pdµ
]1/p

If our measure is the counting measure on X
then we usually denote Lp space by ℓp.

� Two real numbers p > 1 and q > 1 are called
conjugate exponents if 1

p
+ 1

q
= 1. If p = 1.

then we generally say q = ∞ (for norms).

� (Young’s Inequality) If a, b are nonnegative
real numbres and if p, q are conjugate expo-
nents, then

ab ≤ ap

p
+
bq

q

where equality holds iff ap = bq.

� Thm 6.2 (Holder’s Inequality) Suppose p, q
are conjugate exponents. If f, g are measurable
functions on X, then

∥fg∥1 ≤ ∥f∥p∥g∥q

In particular, if f ∈ Lp and g ∈ Lq, then
fg ∈ L1, and in this case equality holds above
iff α|f |p = β|g|q a.e. for some α, β not both
zero.

� Thm 6.5 (Minkowski’s Inequality) If 1 ≤
p <∞ and f, g ∈ Lp, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

� Thm 6.6 For every finite p, Lp is a Banach
space.

� Prop 6.7 For finite p, the set of simple func-
tions f =

∑n
1 ajχEj

, where µ(Ej) < ∞ for all
j, is dense in Lp.

� Thm 6.8cde

(c) ∥fn − f∥∞ → 0 iff there exists E ∈ M
such that µ(Ec) = 0 and fn → f uni-
formly on E.

(d) L∞ is a Banach space.

(e) The simple function are dense in L∞.

� Prop 6.10 (Interpolation) If 0 < p < q < r ≤
∞, then

Lp ∩ Lr ⊆ Lq and ∥f∥q ≤ ∥f∥λp∥f∥1−r
r

where λ ∈ (0, 1) is defined by

λ =
q−1 − r−1

p−1 − r−1

� Prop 6.12 (Relationship between Lp spaces)
If µ(X) < ∞ and 0 < p < q ≤ ∞, then
Lp(µ) ⊇ Lq(µ) and

∥f∥p ≤ ∥f∥qµ(X)(1/p)−(1/q)

� The most important Lp spaces are L1 for inte-
grability, L2 because it is a Hilbert space, and
L∞ because its topology is closely related to
that of uniform convergence.

� Thm 6.15 (Representation of (Lp)∗) Let
p, q be conjugate exponents. If 1 < p < ∞,
then for each ϕ ∈ (Lp)∗ there exists g ∈ Lq

such that ϕ(f) =
∫
fg for all f ∈ Lp, and

hence Lq is isometrically isomorphic to (Lp)∗.
The same conclusion holds for p = 1 provided
µ is σ-finite.

Radon Measures

� Def. (regular measure) If µ is a Borel measure
on X and E a Borel subset of X. The measure
µ is called outer regular on E if

µ(E) = inf{µ(U) : U ⊇ E,U open}

and inner regular on E if

µ(E) = sup{µ(K) : K ⊆ E,K compact}

µ is called regular if µ is both outer and inner
regular.

� If f ∈ Cc(X) with 0 ≤ f ≤ 1 for all x ∈ X, we
write

1. K ≺ f if f(x) = 1 for all x ∈ K where K
is compact.

2. f ≺ V if supp(f) ⊆ V where V is open.
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� Def. A Borel measure on X is called a Radon
measure if

(i) µ(K) <∞ for K compact.

(ii) µ is outer regular for all Borel sets E.

(iii) µ is inner regular for all open sets E or
σ-finite E.

(iv) µ is complete.

� Thm 7.2 (The Riesz Representation The-
orem for positive linear functions) If I is
a positive linear functional on Cc(X), there is
a unique Radon measure µ on X such that
I(f) =

∫
fdµ for all f ∈ Cc(X). Thus, there

is a 1-1 correspondence between the set of pos-
itive linear functions on Cc(X) and the set of
Radon measures on X.

� Prop 7.9 If µ is a Radon measure onX, Cc(X)
is dense in Lp(µ) for 1 ≤ p <∞.

� Due to the representation theorem, we have 2
ways to determine any Radon measure µ on X:

1. Either normally by µ(E) =
∫
χEdµ, for

E ∈ M

2. or µ(E) =
∫
X
fdµ for the correct f ∈

Cc(X).

The reason is that one can approximate χE by
f ∈ Cc(X) when E is nice.

� Lemma 7.15 If I ∈ (C0(X,R))∗, there exists
positive functions I± ∈ (C0(X,R))∗ such that
I = I+−I−. This is a ”Jordan decomposition”
for real linear functionals on C0(X,R).

� Thm 7.17 (The Riesz Representation
Theorem for (C0(X))∗) Let X be a LCH
space, and for µ ∈ M(X) the space of com-
plex Radon measures on X, and f ∈ C0(X) let
Iµ(f) =

∫
fdµ. Then the map µ 7→ Iµ is an iso-

metric isomorphism from M(X) → (C0(X))∗.

� Cor 7.18 If X is a compact Hausdorff space,
then (C(X))∗ is isometrically isomorphic to
M(X).

Elements of Fourier Analysis

� C∞(Rn) is the set of infinitely continuously dif-
ferentiable functions on Rn.

� Def. (multi-index notation) We first abbrevi-
ate partial derivatives by ∂j :=

∂
∂xj

in Rn. Now

for α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈
Nn, we set

|α| =
n∑
1

αj,

and

Xα∂β =

(
n∏
1

αj

)
∂|β|

∂xβ1

1 · · · ∂xβn
n

� One useful C∞ space is C∞
c , the space of com-

pactly supported C∞ functions. One nontriv-
ial example in this space is

ψ(x) =

{
e

1
|x|2−1 , |x| < 1

0, |x| ≥ 1

� Def. (locally convex space and Frechet space)
Recall a seminorm is a norm that isn’t positive
definite (i.e. ρ(x) = 0 iff x = 0). A family of
seminorms {ρα}α∈A is said to separate points
if ρα(x) = 0 for all α ∈ A iff x = 0.

A locally convex space is a vector spaceX with
a family of seminorms that separate points.
The natural topology on such a space is the
weakest topology in which all ρα and addition
are continuous. This topology may be gener-
ated by the set of all open balls w.r.t to each
seminorm.

A locally convect space that is defined by a
countable family of seminorms and is complete
is called a Frechet space.

� Def. (Schwartz space) Schwartz space, S,
consists of C∞ functions which, together with
their derivatives, vanish at infinity faster that
any power of |x|. That is, for any N ∈ N and
α ∈ Nn we define

∥f∥(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf(x)|

then

S = {f ∈ C∞ : ∥f∥(N,α) <∞ for all N,α}
It is important to note that if f ∈ S, then
∂αf ∈ Lp for all α and all p ∈ [1,∞].
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� Prop 8.3 If f ∈ C∞, then f ∈ S iff xβ∂αf
is bounded for all multi-indices α, β ∈ Rn

iff ∂α(xβf) is bounded for all multi-indices
α, β ∈ Rn. This is a very useful alternative
definition for Schwartz functions.

� Prop 8.2 S is a Frechet space with the topol-
ogy defined by the seminorms ∥ · ∥(N,α)

� Def. (convolution) Let f, g be measurable
functions on Rn. The convolution of f and
g is the function f ∗ g defined by

(f ∗ g)(x) =
∫
f(x− y)g(y)dy

for all x such that the integral exists.

� Prop 8.6 Assuming that all integrals in ques-
tion exist, we have

(a) f ∗ g = g ∗ f
(b) (f ∗ g) ∗ h = f ∗ (g ∗ h)
(c) For z ∈ Rn, τz(f ∗g) = (τzf)∗g = f ∗(τzg)

where τz(f) = f(x− z) for all x ∈ Rn.

(d) If A is the closure of {x + y : x ∈
supp(f), y ∈ supp(g)}, then supp(f ∗g) ⊆
A.

� Prop 8.9 (Young’s Inequality) Suppose 1 ≤
p, q, r ≤ ∞ and p−1 + q−1 = r−1 + 1. Then
if f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr and
∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

� Thm 8.15 (Approximate identities) For a
function ϕ on Rn and t > 0 we define

ϕt(x) = t−nϕ(t−nx)

If ϕ ∈ L1 and
∫
ϕ(x)dx = a then

(a) If f ∈ Lp (1 ≤ p < ∞), then f ∗ ϕt → af
in the Lp norm as t→ 0.

(b) If f is bounded and uniformly continuous,
then f ∗ ϕt → af uniformly as t→ 0.

(c) If f ∈ L∞ and f is continuous on an open
set U, then f ∗ϕt → af uniformly on com-
pact subsets of U as t→ 0.

� Prop 8.17 C∞
c (and hence also S) is dense in

Lp (1 ≤ p <∞) and in C0.

� Thm 8.20 Let Ek(x) = e2πikx, then {Ek : k ∈
Zn} is an orthonormal basis of L2(Tn). It is
also dense in C(Tn) which is dense in L2(Tn)

� Def. (Fourier transform on L2(Tn)) If f ∈
L2(Tn), we define its Fourier transform f̂ , a
function on Zn, by

F(f)(k) = f̂(k) = ⟨f, Ek⟩ =
∫
f(x)e−2πikxdx

and we call the series∑
k∈Zn

f̂(k)Ek

the Fourier series of f . The Fourier transform
maps L2(Tn) onto ℓ2(Zn) with ∥f̂∥2 = ∥f∥2,
and that the Fourier series of f converges to f
in the L2 norm.

� Thm 8.21 (The Hausdorff-Young In-
equality) Suppose that 1 ≤ p ≤ 2 and q is
the conjugate exponent of p. If f ∈ Lp(Tn),
then f̂ ∈ ℓq(Zn) and ∥f̂∥q ≤ ∥f∥p.

� Def. (Fourier transform on L1(Rn)) Let f ∈
L1. Then

F(f)(ξ) = f̂(ξ) =

∫
f(x)e−2πiξxdx

� Thm 8.22 (Elementary properties of the
Fourier transform) Suppose f, g ∈ L1(Rn).

(a) (τyf )̂(t) = e−2πityf̂(t) and τy(f̂) = ĥ
where h(x) = e2πiyxf(x).

(b) If T is an invertible linear tranforma-
tion of Rn and S = (T ∗)−1 is its inverse

transpose, then (f ◦ T )̂ = f̂ ◦ T ; and if

T (x) = y−1x, (y > 0), then (f ◦ T )̂(t) =
ynf̂(yt), so that (fy )̂(t) = f̂(yt) where
fy(t) = y−nf(y−1t)

(c) (f ∗ g)̂ = f̂ ĝ.

(d) If xαf ∈ L1 for |α| ≤ k then f̂ ∈ Ck and

∂αf̂ = [(−2πix)αf ]̂.

(e) If f ∈ Ck, ∂αf ∈ L1 for |α| ≤ k, and

δαf ∈ C0 for |α| ≤ k−1, then (∂αf )̂(t) =
(2πit)αf̂(t)

(f) (The Riemann-Lebesgue Lemma)

F(L1(Rn)) ⊂ C0(Rn).
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� Thm 8.26 (The Fourier Inversion Theo-
rem) If f ∈ L1, we define

F−1(f)(x) = f̂(−x) =
∫
f(ξ)e2πiξxdξ.

if f̂ ∈ L1 as well, then f agrees almost ev-
erywhere with a continuous function f0, and
F−1(f̂) = (̂F−1(f)) = f0.
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2 Undergraduate Exercises

2.1 UCR RA Qual 2020

Prove that if f : R → R is differentiable then so is f 2. Use only the definition of the derivative.

Solution: Since f is differentiable then

lim
h→0

f(x+ h)− f(x)

x+ h

exists. Then observe that

lim
h→0

f 2(x+ h)− f 2(x)

x+ h
= lim

h→0

(
f(x+ h)− f(x)

x+ h

)
(f(x+ h) + f(x))

= lim
h→0

(
f(x+ h)− f(x)

x+ h

)
lim
h→0

(f(x+ h) + f(x))

Since both limits above exist by the differentiability of f , then f 2 is also differentiable. ■

2.2 UCR RA Qual 2020

Let f, g : R → R be continuous functions. Show, using the ϵ−δ definition of continuity, that the composite
f ◦ g : R → R is continuous.

Solution: Let c ∈ R and let ϵ > 0. We want to show limx→c(f ◦ g)(x) = (f ◦ g)(c). Since f is continuous
at g(c), there exists δ1 > 0 such that |f(x)− f(g(c))| < ϵ if |x− g(c)| < δ1. Similarly, since g is continuous
at c, then there exists δ2 > 0 such that |g(x) − g(c)| < δ1 if |x − c| < δ2. Then letting δ = min{δ1, δ2}, if
|x− c| < δ, then

|g(x)− g(c)| < δ1

so we have that
|f(g(x))− f(g(c))| < ϵ

Thus, limx→c(f ◦ g)(x) = (f ◦ g)(c). ■
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2.3 UCR RA Qual 2020

Prove or disprove: If fn : [0, 1] → R is a sequence of continuous functions and fn converges uniformly to
f : [0, 1] → R, then ∫ 1

0

fndx→
∫ 1

0

fdx

Tools:

� Theorem 2.24 (Folland): (Dominated Convergence Theorem), Let (fn) ⊆ L1(X) such that

(a) fn → f µ-a.e.

(b) There exists g ∈ L1, g ≥ 0 such that |fn| ≤ g µ-a.e. for all n

Then f ∈ L1 and
∫
X
f = limn→∞

∫
X
fn.

Solution: In order to invoke the DCT, we will first prove that f is continuous (i.e. the uniform limit of
continuous functions is continuous).

Proof. Let c ∈ [0, 1] and ϵ > 0. Then since fn → f uniformly, then there exists N ∈ N such that
∥fn − f∥∞ < ϵ/3 for all n ≥ N . Moreover, since fN is a continuous function, there exists δ > 0 such that
|fN(x)− fN(c)| < ϵ/3 if |x− c| < δ. Thus,

|f(x)− f(c)| = |f(x)− fN(x) + fN(x)− fN(c) + fN(c)f (c)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(c)|+ |fN(c)f (c)|
≤ 2∥f − fN∥+ |fN(x)− fN(c)|
< 2(ϵ/3) + ϵ/3

= ϵ.

Thus, f is continuous on [0,1], it must attain its max and min values. Thus, there exists M ∈ N such
that for every n ≥M , ∥fn − f∥ < 1, so

fn(x) < f(x) + 1, ∀x ∈ [0, 1], 1 ≤ n ≤M.

Thus, define
C = max(|f + 1|) + max {max(|fn|) : 1 ≤ n ≤M}

Then C ∈ L1[0, 1], fn ≤ C for every n, so by the DCT,

lim
n→∞

∫ 1

0

fndx =

∫ 1

0

fdx. ■

2.4 UCR RA Qual 2019

Find a function f : R → R that is differentiable everywhere but whose derivative is not continuous
everywhere. Prove it has both these properties.
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Solution: Consider the function f given by

f(x) =

{
x2 sin(1/x), x ̸= 0

0, x = 0

For x = 0, we see that

lim
h→0

f(h)− f(0)

h
= lim

h→0

h2 sin(1/h)

h
= lim

h→0
h sin(1/h) = 0

by the squeeze theorem, so f is differentiable at x = 0. Moreover, it is clear that f is differentiable for
x ̸= 0 and

f ′(x) =

{
2x sin(1/x) + cos(1/x), x ̸= 0

0, x = 0

Now observe that
lim
x→0+

cos(1/x) = lim
x→∞

cos(x)

which clearly does not exist. Thus, f ′ is not continuous at x = 0. ■

2.5 UCR RA Qual 2020

Prove or disprove: if f : R → R is uniformly continuous, then f 2 is also uniformly continuous.

Tools:

� Def. (uniform continuity). A function f : R → C is uniformly continuous if for every ϵ > 0, there
exist δ > 0 such that |f(x)− f(y)| < ϵ if |x− y| < δ.

Solution: False. Consider the identity function f(x) = x for all x ∈ R. Then it is clear that f is
uniformly continuous since if |x− y| < ϵ then |f(x)− f(y)| < ϵ. Now suppose that f 2(x) = x2 is uniformly
continuous, then there exists δ > 0 such that

|x− y| < δ =⇒ |x2 − y2| < ϵ

However, by choosing x = ϵ
δ
+ δ

2
and y = ϵ

δ
then |x− y| < δ, but

|x2 − y2| = |x− y||x+ y| =
(
δ

2

)(
2ϵ

δ
+
δ

2

)
> ϵ

Thus, f 2 is not uniformly continuous. ■

2.6 UCR RA Qual 2019

Find a function f : R → R that is continuous at all the irrational numbers and discontinuous at all the
rational numbers. Prove it has both these properties.
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Solution: Consider the function f : R → R by

f(x) =

{
1
q
, if x ∈ Q and x = p/q fully reduced. p, q ∈ Z.

0, x ∈ R\Q

Consider r ∈ Q, so r = p/q when reduced. Since R\Q is dense in R, then we know that for any δ > 0,
there exists an irrational number y such that |y− r| < δ. But we see that |f(y)− f(r)| = |0− 1/q| = |1/q|
Thus, f is discontinuous at r ∈ Q.

Now consider r ∈ R\Q and ϵ > 0. Then we first note that there exists some N ∈ N such that
1/N > ϵ, but 1/(N + 1) ≤ ϵ. Next, for each 1 ≤ n ≤ N , we observe that in the interval [r − 1, r + 1],
there are only finitely many m ∈ Z such that m/n ∈ [r − 1, r + 1]. Thus, the number of reduced
rational numbers of the form m/n such that m/n ∈ [r − 1, r + 1] and 1/n > ϵ must be finite as well.
Therefore, define d = min{|m/n − r| : m/n ∈ [r − 1, r + 1], 1/n > ϵ}. Thus, for any x ∈ R such that
|x− r| < d, if x ∈ R\Q then |f(x)− f(r)| = 0 < ϵ. Otherwise, if x ∈ Q, then x = p/q when reduced and
|f(x)− f(r)| = |f(x)| = |1/q| < ϵ since it must be that q > N. Thus, f is continuous at r ∈ R\Q.

2.7 UCR RA Qual 2019

Prove straight from the definition of the Riemann integral that this function f : [0, 1] → R is Riemann
integrable.

f(x) =

{
0, if x ≤ 1/2

1, if x > 1/2

Tools:

� (Criterion for Riemann integrability) f : [a, b] → R is said to be Riemann integrable iff f is bounded
and for all ϵ > 0, there exists a partition P = {x0, x1, . . . , xn} of [a, b] so that U(f, P )− L(f, P ) < ϵ
where

U(f, P ) =
n∑

j=1

(
sup

x∈[xj−1,xj ]

f(x)

)
(xj − xj−1)

and

L(f, P ) =
n∑

j=1

(
inf

x∈[xj−1,xj ]
f(x)

)
(xj − xj−1)

Solution: Let ϵ > 0. Then there exists some N ∈ N such that 1/N < ϵ and consider the partition
P = { j

2N
: 0 ≤ j ≤ 2N} or [0, 1]. Then observe that for all 1 ≤ j ≤ 2N , j ̸= N + 1,(

sup
x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x)

)
= 0
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since f is constant on [xj−1, xj]. Thus,

U(f, P )− L(f, P ) =
2N∑
j=1

(
sup

x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x)

)
(xj − xj−1)

=

 sup
x∈[ 12 ,

N+1
2N ]

f(x)− inf
x∈[ 12 ,

N+1
2N ]

f(x)

( 1

2N

)

= (1− 0)

(
1

2N

)
=

1

2N
< ϵ ■

2.8 UCR RA Qeal 2013

Show that [0, 1] is uncountable.

Tools:

� Thm 5.9 (The Baire Category Theorem) Let X be a complete metric space.

(a) If (Un)
∞
1 is a sequence of open dense subsets of X, then

⋂∞
1 Un is dense in X

(b) X is not a countable union of nowhere dense sets, i.e. not meager.

� A closed subset of a complete metric space is also complete.

Proof. Suppose (X, ρ) is a complete metric space and S ⊆ X is closed. Let (xn)
∞
1 ⊂ S be a Cauchy

sequence in S. Then since X is complete, then we know xn → x for some x ∈ X, but since S is
closed, then x ∈ S. Thus, S is complete.

Solution: Suppose [0, 1] is countable, then

[0, 1] =
⋃

x∈[0,1]

{x}

It is clear that {x} is a closed set with empty interior, hence nowhere dense. Hence [0, 1] is the countable
union of nowhere dense sets, so by the Baire category theorem, [0,1] is not complete. However this
contradicts that [0, 1] is a complete metric space since R is complete and [0, 1] is closed. Thus, [0, 1] must
be uncountable.

3 Part A Exercises

3.1 Folland 1.3

Let M be a σ-algebra.
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(a) M contains an infinite sequence of disjoint sets.

(b) card(M) ≥ card(R).

Tools:

� Def: (σ-algebra). Let X ̸= ∅. Then a σ-algebra of sets on X is a nonempty collection M of subsets
of X that is:

1. closed under countable union

2. closed under complement

and hence closed under countable intersection.

Solution:

(a) Since M is infinite, then there exists E1 ∈ M such that ∅ ⊂ E1 ⊂ X and the following set

A = {E ∩ E1 : E ∈ M}

is infinite. Otherwise, if no such set exists, then for any ∅ ⊂ E1 ⊂ X, A and B = {E ∩Ec
1 : E ∈ M}

would both be finite, but then

AB = {F ∪G : F ∈ A and G ∈ B}

would also be finite, but M ⊆ AB which contradicts that M is infinite. Hence, such an E1 exists
and we’ll denote M1 = {E ∩ E1 : E ∈ M}
Claim: M1 is a σ-algebra of sets on E1.

Proof. Let (Bn ∩ E1)
∞
1 ⊆ M1, then

∞⋃
1

Bn ∩ E1 =

(
∞⋃
1

Bn

)
∩ E1 ∈ M1

since
⋃∞

1 Bn ∈ M. Next, let B ∩ E1 ∈ M1. Then

(B ∩ E1)
c = Bc ∪ Ec

1 = Bc ∪∅ = Bc ∩ E1 ∈ M1

Note that the complement above is taken w.r.t. E1 as our ”universe”. Thus, M1 is a σ-algebra on
E1.

Also, it is clear that Ec
1 is disjoint from every set in M1. Moreover since M1 is an infinite σ-alg.,

there exists E2 ∈ M1 such that ∅ ⊂ E2 ⊂ E1 where

M2 = {E ∩ E2 : E ∈ M1}

is again an infinite σ-algebra by the above process and Ec
2 ∩E1 is disjoint from every set in M2 and

Ec
1, where the complement is taken w.r.t. X.

Thus, continuing by induction, we generate a disjoint sequence of sets in M:

Ec
1, E

c
2 ∩ E1, E

c
3 ∩ E2, . . . , E

c
n ∩ En−1, . . .

where the complement is again taken w.r.t. X. ■
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(b) Since M is infinite, then by (a), there exists (Aj)
∞
1 ⊂ M where (Aj) is disjoint. Now, consider the

set of all increasing sequences of natural numbers,

S = {f : N → N|f is increasing}

Claim: S is uncountable.

Proof. Suppose S is only countably infinite, so S = {f1, f2, . . . }. Define the sequence f : N → N by

f(n) =

{
f1(1) + 1, n = 1

1 +
∑n

k=1 fk(k), n > 1

Then, f is increasing, but f ̸= fk for any k ∈ N, so f ̸∈ S; a contradiction. Thus, S is uncountable.

Therefore, the collection

A =

{⋃
n∈N

Af(n)

}
f∈S

⊂ M

is an uncountable collection of sets, so M must at least be uncountable. ■

3.2 Folland 1.4

An algebra A is a σ-alg. iff A is closed under countable increasing unions.

Tools:

� Def: (algebra). An algebra A on a set X is a collection of subsets of X that is

1. closed under finite union

2. closed under complement

Solution:

(⇒) Clear by definition of σ-alg.

(⇐) Suppose A is closed under countable increasing unions and let (Ej)
∞
1 ⊆ A be an arbitrary sequence

of sets in A. Then define (Fj)
∞
1 by

Fj =

j⋃
k=1

Ek

so (Fj)
∞
1 is an increasing sequence of sets in A. Moreover,

∞⋃
j=1

Ej =
∞⋃
j=1

Fj ∈ A.

so A is a σ-alg. ■
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3.3 Folland 1.5

M(ε) is the union of the σ-algebras generated by F as F ranges over all countable subsets of ε ⊆ P(X).
(Hint: Show that the latter object is a σ-alg).

Tools:

� Lemma 1.1 (Folland): Let X ̸= ∅. For ε, F ⊆ P(X). If ε ⊆ M(F ), then M(ε) ⊆ M(F ).

Solution: Let S := {F ⊆ ε : F is countable}

(⊇) Since F ⊆ ε ⊆ M(ε), then by Lemma 1.1, M(F ) ⊆ M(ε) for all F ∈ S, so⋃
F∈S

M(F ) ⊆ M(ε).

(⊆) In order to employ a similar strategy, we’ll prove the following:

Claim:
⋃

F∈S M(F ) is a σ-alg.

Proof. Let A ∈
⋃

F∈S M(F ), then A ∈ M(F ) for some F ∈ S. Thus, Ac ∈ M(F ) ⊆
⋃

F∈S M(F ).
Now for (Aj)

∞
1 ⊆

⋃
F∈S M(F ), we know that there exists (Fj)

∞
1 ⊆ S such that Aj ∈ M(Fj). Since

each Fj is countable, then
⋃∞

1 Fj is countable as well, so
⋃∞

1 Fj ∈ S. Hence, by lemma 1.1,

Aj ∈ M(Fj) ⊆ M

(
∞⋃
1

Fj

)

for all j ∈ N. Thus,
⋃∞

1 Aj ∈ M (
⋃∞

1 Fj), so
⋃∞

1 Fj is indeed a σ-alg.

To now show that ε ⊆
⋃

F∈S M(F ), let E ∈ ε, then {E} ∈ S, so

E ∈ {E} ⊆ M({E}) ⊆
⋃
F∈S

M(F )

so by lemma 1.1, M(ε) ⊆
⋃

F∈S M(F ). ■

3.4 Folland 1.6

Prove theorem 1.9 (Folland): Suppose (X,M, µ) is a measure space. Let

N = {N ∈ M : µ(N) = 0}

and
M = {E ∪ F : E ∈ M and F ⊆ N ∈ N}

Then M is a σ-alg. and there is a unique extension µ of µ to a complete measue on M.
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Tools:

� Def: (measure). Let X ̸= ∅ be equipped with a σ-alg. M. A measure on (X,M) is a function
µ : M → [0,∞] such that

(i) µ(∅) = 0

(ii) If (Ej)
∞
1 ⊂ M is disjoint, then

µ

(
∞⋃
j=1

Ej

)
=

∞∑
j=1

µ(Ej)

� Theorem 1.8ab (Folland): Let (X,M, µ) be a measure space.

(a) (Monotonicity). If E,F ∈ M and E ⊆ F then µ(E) ≤ µ(F ).

(b) (Subadditivity). If (Ej)
∞
1 ⊂ M, then µ (

⋃∞
1 Ej) ≤

∑∞
1 µ(Ej).

� Def: (null set). E ∈ M is a null set if µ(E) = 0. When dealing with multiple measure, we may
specify that E is µ-null.

� Def: (Complete measure): A measure whose domain (the σ-alg.) contains all subsets of null sets is
called complete.

Solution: To show M is a σ-alg., consider (En ∪ Fn)
∞
1 ⊂ M where En ∈ M and Fn ⊆ Nn for some

Nn ∈ N for each n ∈ N. Then
∞⋃
n=1

En ∪ Fn =
∞⋃
n=1

EN ∪
∞⋃
n=1

Fn ∈ M

since
⋃∞

n=1En ∈ M and
⋃∞

n=1 Fn ⊆
⋃∞

n=1Nn ∈ N and it is clear that a countable union of null sets is still
a null set by subadditivity.

Next, for E ∪ F ∈ M, F ⊆ N , N ∈ N , we may assume E ∩N = ∅, otherwise replace F by F\E and
N by N\E. Then we know that

E ∪ F = (E ∪N) ∩ (N c ∪ F )
(E ∪ F )c = (E ∪N)c ∪ (N c ∪ F )c

= (Ec ∩N c) ∪ (N ∩ F c)

= (Ec ∩N c) ∪ (N\F )

and we know (Ec ∩N c) ∈ M and N\F ⊆ N , so (E ∪ F )c ∈ M, hence M is a σ-alg.

Next, we’ll define our extension µ of µ by

µ(E ∪ F ) = µ(E).

This is well-defined since if E1 ∪ F1 = E2 ∪ F2 where F1 ⊂ N1 ∈ N and F2 ⊂ N2 ∈ N , then we know
E1 ⊆ E2 ∪N2, so

µ(E1 ∪ F1) = µ(E1) ≤ µ(E2) + µ(N2) = µ(E2) = µ(E2 ∪ F2)

and similarly, µ(E2 ∪ F2) ≤ µ(E1 ∪ F1).

To show that µ on M is complete, simply consider N ∈ N and let F ⊂ N . Then F = ∅ ∪ F ∈ M.
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Last, suppose ν is also a complete extension of µ over M. Let E ∪ F ∈ M where F ⊆ N ∈ N , and
we’ll assume E ∩ F = ∅. Then

ν(E ∪ F ) = ν(E) + ν(F ) = µ(E) + ν(F ) = µ(E ∪ F ) + ν(F ) = µ(E ∪ F ).

Hence µ is unique. ■

3.5 Folland 1.7

If µ1, . . . , µn are measures on (X,M) and a1, . . . , an ∈ [0,∞), then
∑n

j=1 ajµj is also a measure on (X,M).

Solution: It is clear that
∑n

j=1 ajµj is nonnegative. Next, it is clear that(
∞∑
j=1

ajµj

)
(∅) =

n∑
j=1

ajµj(∅) = 0.

and for a disjoint sequence (Ej)
∞
1 ⊂ M,(
n∑

j=1

ajµj

)(
∞⋃
k=1

Ek

)
=

∞∑
j=1

ajµ

(
∞⋃
k=1

Ek

)

=
n∑

j=1

aj

(
∞∑
k=1

µj(Ek)

)

=
n∑

j=1

∞∑
k=1

ajµj(Ek)

=
∞∑
k=1

(
n∑

j=1

ajµj

)
(Ek)

■

3.6 Folland 1.8

If (X,M, µ) is a measure space and (Ej)
∞
1 ⊂ M, then

µ(lim inf Ej) ≤ lim inf µ(Ej).

Also, if µ (
⋃∞

1 Ej) <∞, then
µ(lim supEj) ≥ lim supµ(Ej).

Tools:

� Def: (set-theoretic limit). Suppose that (An)
∞
1 is a sequence of sets. Then

lim inf
n→∞

An =
⋃
n≥1

⋂
j≥n

Aj
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lim sup
n→∞

An =
⋂
n≥1

⋃
j≥n

Aj

� Theorem 1.8cd (Folland): Let (X,M, µ) be a measure space.

(c) (continuity from below): If (Ej)
∞
1 ⊂ M and E1 ⊂ E2 ⊂ E3 ⊂ · · · , then

µ

(
∞⋃
j=1

Ej

)
= lim

j→∞
µ(Ej)

(d) (continuity from above): If (Ej)
∞
1 ⊂ M and E1 ⊃ E2 ⊃ · · · , and µ(E1) <∞, then

µ

(
∞⋂
j=1

Ej

)
= lim

j→∞
µ(Ej)

Solution: Let (Ej)
∞
1 ⊂ M. Since

⋂
k≥j1

Ek ⊆
⋂

k≥j2
Ek for j1 ≤ j2, then by continuity from below,

µ(lim inf Ej) = µ

(⋃
j≥1

⋂
k≥j

Ek

)

= lim
j→∞

µ

(⋂
k≥j

Ek

)
≤ lim

j→∞
(inf
k≥j

µ(Ek))

= lim inf
j→∞

µ(Ej)

Now suppose µ
(⋃∞

j=1Ej

)
<∞, then by continuity from above,

µ(lim supEj) = µ

(⋂
j≥1

⋃
k≥j

Ek

)

= lim
j→∞

µ

(⋃
k≥j

Ek

)
≥ lim

j→∞
(sup
k≥j

µ(Ek))

= lim sup
j→∞

µ(Ej)

■

3.7 Folland 1.9

If (X,M, µ) is a measure space and E,F ∈ M, then

µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).
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Solution: Observe

µ(E ∪ F ) = µ((E\F ) ∪ (E ∩ F ) + (F\E))
= µ(E\F ) + µ(E ∩ F ) + µ(F\E)
= µ(E ∪ F )− µ(F ) + µ(E ∩ F )
+ µ(E ∪ F )− µ(E)

= 2µ(E ∪ F ) + µ(E ∩ F )− µ(E)− µ(F )

■

3.8 Folland 1.10

Let (X,M, µ) be a measure space and E ∈ M. Define µE(A) = µ(A ∩ E) for any A ∈ M. Then µE is a
measure on M.

Solution: It’s clear that µE(∅) = µ(∅ ∩ E) = 0. For a disjoint sequence (Aj)
∞
1 ⊂ M,

µE

(
∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

Aj ∩ E

)

=
∞∑
j=1

µ(Aj ∩ E)

=
∞∑
j=1

µE(Aj).

■

3.9 Folland 1.11

Let µ be a finitely additive measure on (X,M). Then

(i) µ is a measure iff it is continuous from below.

(ii) If µ(X) <∞, µ is a measure iff it is continuous from above

Solution:

(i) Suppose µ is continuous from below. Let (Ej)
∞
1 ⊂ M be disjoint, then by finite additivity,

µ

(
k⋃

j=1

Ej

)
=

k∑
j=1

µ(Ej)
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so

lim
k→∞

µ

(
k⋃

j=1

Ej

)
=

∞∑
j=1

µ(Ej)

Let Fk =
⋃k

j=1Ej, then (Fk)
∞
1 ⊂ M and F1 ⊆ F2 ⊆ · · · , so

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
k=1

Fk

)
= lim

k→∞
µ(Fk)

= lim
k→∞

µ

(
k⋃

j=1

Ej

)

=
∞∑
j=1

µ(Ej).

(ii) Suppose µ(X) < ∞ and µ is continuous from above. Let (Ej)
∞
1 ⊂ M be disjoint. Then let

E =
⋃∞

j=1Ej and Fk = E\
(⋃k−1

j=1 Ek

)
, k ≥ 2 with F1 = E.

Claim:
⋂∞

k=1 Fk = ∅.

Proof. Suppose
⋂∞

k=1 Fk ̸= ∅, so there exists x such that x ∈
⋂∞

k=1 Fk =
⋂∞

k=1

⋃∞
j=k Ej. Thus,

x ∈
⋃∞

j=k Ej for all k ≥ 1. Then for k = 1 there exists N1 ∈ N such that x ∈ En1 , but for k > n1,
there exists n2 ̸= n1 such that x ∈ En2 , which contradicts that (Ej)

∞
1 is disjoint.

Now observe that

lim
k→∞

µ

(
k⋃

j=1

Ej

)
=

∞∑
j=1

µ(Ej)

and

µ

(
∞⋃
j=1

Ej

)
= µ(E\Fk+1) = µ(E)− µ(Fk+1)

and by continuity from above,

lim
k→∞

µ(Fk+1) = µ

(
∞⋂
k=1

Fk

)
= 0

so,

∞∑
j=1

µ(Ej) = lim
k→∞

µ

(
k⋃

j=1

Ej

)
= lim

k→∞
(µ(E)− µ(Fk+1))

= µ(E)− lim
k→∞

µ(Fk+1)

= µ(E)− µ

(
∞⋂
k=1

Fk

)
= µ(E)

■
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3.10 Folland 1.12

Let (X,M, µ) be a finite measure space.

(a) If E,F ∈ M and µ(E△F ) = 0, then µ(E) = µ(F ).

(b) Say that E ∼ F if µ(E△F ) = 0. Then ∼ is an equivalence relation.

(c) For E,F ∈ M, define ρ(E,F ) = µ(E△F ). Then for G ∈ M, ρ(E,G) ≤ ρ(E,F )+ρ(F,G) and hence
ρ defines a metric on the space M\ ∼ of equivalence classes.

Solution:

(a) Observe,

µ(E) = µ((E△F ∪ E ∩ F )\(F\E))
= µ(E△F ) + µ((E ∩ F )\(F\E))
= µ((E ∩ F )\(F\E))
= µ(F )− µ(F\E)
= µ(F )

since F\E ⊆ E△F.

(b) It is clear that ∼ is reflexive and symmetric, so let E,F,G ∈ M and suppose that E ∼ F, F ∼ G.
Then,

µ(E\G) = µ(E\(F ∪G)) + µ((E ∩ F )\G)
≤ µ(E\F ) + µ(F\G)
≤ µ(E△F ) + µ(F△G)
= 0.

Similarly, µ(G\E) = 0, so E ∼ G and hence ∼ is an equivalence relation.

(c) Since E\G ⊆ E\F ∪ F\G and G\E ⊆ G\F ∪ F\E, then

ρ(E,G) = µ(E△G)
= µ(E\G) + µ(G\E)
= µ(E\F ) + µ(F\G) + µ(G\F ) + µ(F\E)
= µ(E△F ) + µ(F△G)
= ρ(E,F ) + ρ(F,G).

■

3.11 Folland 1.13

Every σ-finite measure is semifinite.
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Tools:

� Def: (σ-finite measure). A measure µ on (X,M) is called σ-finite if there exists (Ej)
∞
1 such that

X =
∞⋃
j=1

Ej

and µ(Ej) <∞ for all j ∈ N. Note X need not have infinite measure.

� Def: (semifinite measure). A measure µ on (X,M) is called semifinite if for E ∈ M with µ(E) <∞,
there exists F ⊂ E such that

0 < µ(F ) <∞

Solution: Let µ be σ-finite. Then X =
⋃∞

j=1Ej where µ(Ej) < ∞ for all j. Suppose E ∈ M and
µ(E) = ∞. Then

E ∩X = E ∩
∞⋃
j=1

Ej =
∞⋃
j=1

E ∩ Ej

so we have that

µ(E) ≤
∞∑
j=1

µ(E ∩ Ej) = ∞.

Hence, there must exist some E ∩ Ek such that 0 < µ(E ∩ Ek) <∞, so µ is semifinite. ■

3.12 Example/Counterexample

Find a semifinite measure that is not σ-finite.

Tools:

� (Disjointify) Let (Ej)
∞
1 be a sequence of subsets of X. Then define the sequence (Fj)

∞
1 by

F1 = E1

F2 = E2\E1

F3 = E3\(E1 ∪ E2)

...

Fn = En\

(
n−1⋃
j=1

Ej

)
...

Then (Fj) is a disjoint sequence of subsets of X.
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Solution Consider (R,P(R), c) where c is defined as the counting measure. We will show c is semifinite
on R but not σ-finite.

c is semifinite since any E ∈ P(R) where c(E) = ∞ is nonempty, so there is some {x} ⊂ E and
c({x}) = 1.

Now suppose that c is σ-finite. Then

R =
∞⋃
j=1

Ej

where c(Ej) < ∞. We may assume that (Ej)
∞
1 is a disjoint sequence, otherwise disjointify it. Since each

c(Ej) is finite, we may write Ej = {ej1, ej2, . . . , ejcj} where cj = c(Ej). Thus, we may define f :
⋃∞

j=1Ej →
N by

f(ekmk
) =

(
k∑

j=1

cj

)
+mk

where 0 < mk ≤ ck. Suppose f(ekmk
) = f(eℓmℓ

), then(
k∑

j=1

cj

)
+mk =

(
ℓ∑

j=1

cj

)
+mℓ

Now consider the following cases:

1. (k = ℓ,mk ̸= mℓ). This case results in an immediate contradiction.

2. (k ̸= ℓ). If k ̸= ℓ, then wlog, let ℓ > k, so

ℓ∑
j=1

cj =

(
ℓ∑

j=1

cj

)
+ cj+1 + · · ·+ cℓ

Thus, regardless of the value of mk,mℓ, we have a contradiction.

Hence, k = ℓ, so f is injective. If n ∈ N, then there exists k ∈ N such that

k∑
j=1

cj ≤ n <

(
k∑

j=1

cj

)
+ ck+1

Then, letting M = k + 1 and N = n−
∑k

j=1 jcj, we see that

f(eMN) = n

Hence, f is a bijection, so
⋃∞

j=1Ej is countable infinite which contradicts that R =
⋃∞

j=1Ej. Thus, c is
not σ-finite. ■

3.13 Folland 1.14

If µ is a semifinite measure and µ(E) = ∞, then for any c > 0, there exists F ⊂ E with c < µ(F ) <∞.
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Tools:

� (Technique). When asked to prove that one can ”surpass” any positive number, one helpful tip is to
find a way to use the supremum of a relevant set and show that it equals infinity. Constructing such
a set and invoking the supremum allows one to also construct a sequence and make use of its tools.

Solution: Consider the set

F = {µ(A) : A ∈ M, A ⊂ E, µ(A) <∞}

and let sup(F ) = s. Suppose for a contradiction that s <∞ and let (Aj)
∞
1 ⊂ M, Aj ⊂ F for all j ∈ N be a

sequence such that µ(Aj) → s as j → ∞. Then let A =
⋃∞

1 Aj. We know µ(A) ≥ s, but if s < µ(A) <∞
then we contradict that s = sup(F ), so either µ(A) = s or µ(A) = ∞.

If µ(A) = ∞, then define (Bj)
∞
0 by Bj = Aj\Bj−1 for j ≥ 1 and B0 = ∅. Then (Bj)

∞
1 ⊂ M is a

disjointification of (Aj)
∞
1 and

µ

(
∞⋃
j=1

Bj

)
= µ

(
∞⋃
j=1

Aj

)
= µ(A) = ∞

so it must be that

µ

(
n⋃

j=1

Bj

)
=

n∑
j=1

µ(Bj) → ∞ as n→ ∞

so there exists N ∈ N such that

µ

(
N⋃
j=1

Bj

)
=

N∑
j=1

µ(Bj) > s

which contradicts that s = sup(F ) since
⋃N

j=1Bj ⊂ E.

If µ(A) = s, then µ(E\A) = ∞, so there exists A′ ⊂ E\A such that 0 < µ(A′) < ∞, but µ(A ∪ A′) =
µ(A) + µ(A′) = s+ µ(A′) > s; a contradiction. Hence s = ∞. ■

3.14 Folland 1.15

Given a measure µ on (X,M), define µ0 on (X,M) define µ0 on M by

µ0(E) = sup{µ(F ) : F ⊂, µ(F ) <∞}

(a) µ0 is semifinite. It is called the semifinite part of µ.

(b) If µ is semifinite, then µ = µ0

(c) There exists a measure ν on M (in general, not unique) which assumes only the values 0 and ∞
such that µ = µ0 + ν
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Solution:

(a) We’ll first show that µ0 is a measure on M. It is clear that µ0(∅) = 0, so let (Aj)
∞
1 ⊂ M be disjoint.

Then consider F ∈ M such that F ⊂
⋃∞

j=1Aj with µ(F ) < ∞. We know F =
⋃∞

j=1 F ∩ Aj and
µ(F ∩ Aj) <∞ for all j, so µ(F ∩ Aj) ≤ µ0(Aj). Thus,

µ(F ) =
∞∑
j=1

µ(F ∩ Aj) ≤
∞∑
j=1

µ0(Aj)

for any such F , so µ0(
⋃∞

j=1) ≤
∑∞

j=1 µ0(Aj).

Now suppose for a contradiction that µ0(
⋃∞

j=1) <
∑∞

j=1 µ0(Aj) and let δ =
∑∞

j=1 µ0(Aj)−µ0(
⋃∞

j=1) >
0. Then for all j ∈ N, there exists Fj ⊂ Aj, µ(Fj) <∞ such that

µ0(Aj)−
δ

2
· 2−j ≤ µ(Fj) ≤ µ0(Aj).

Then since (Aj)
∞
1 is disjoint, then

µ

(
∞⋃
j=1

Fj

)
=

∞∑
j=1

µ(Fj) ≥
∞∑
j=1

(µ0(Aj)−
δ

2
· 2−j)

=
∞∑
j=1

µ0(Aj)−
δ

2

= µ0

(
∞⋃
j=1

Aj

)
+
δ

2
.

Moreover, since
∑∞

1 µ(Fj) > µ0(
⋃∞

1 Aj), then there exists N ∈ N such that

N∑
j=1

µ(Fj) = µ

(
N⋃
j=1

Fj

)
> µ0

(
∞⋃
j=1

Aj

)

but
⋃N

1 Fj ⊂
⋃∞

1 Aj and since µ(Fj) <∞ for all j, then µ(
⋃N

1 Fj) <∞ as well, so

µ0

(
∞⋃
j=1

Aj

)
< µ

(
N⋃
j=1

Fj

)
≤ µ0

(
∞⋃
j=1

Aj

)

a contradiction. Thus, µ0(
⋃∞

1 Aj) =
∑∞

1 µ0(Aj), so µ0 is a measure.

To show that µ0 is semifinite, suppose µ0(E) = ∞, then for any c > 0, by definition of µ0, there
exists some F ⊂ E such that c < µ(F ) <∞. Then it is clear that µ0(F ) = µ(F ).

(b) Suppose µ is semifinite. Let E ∈ M. If µ(E) = ∞, then by Folland 1.14, for every c > 0, there
exists F ⊂ E such that c < µ(F ) <∞, so µ0(E) = ∞. If µ(E) <∞, then for every F ⊂ E, we know
µ(F ) ≤ µ(E). Moreover,µ(E) ≤ µ0(E) since µ(E) < ∞. (finite case doesn’t need µ semifinite).
Hence for all E ∈ M, µ(E) = µ0(E).

(c) To begin, we first define the notion of a semifinite set. Let E ∈ M with µ(E) = ∞. Then we say
that E is semifinite w.r.t. µ if for every F ⊆ E, with µ(F ) = ∞, there exists F ′ ⊂ F such that
0 < µ(F ′) <∞.
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Using this, we see that if E is semifinite w.r.t. µ, then by Folland 1.14, µ(E) = µ0(E).

Now, define ν : M → {0,∞} by

ν(E) =

{
0, if µ(E) <∞ or E is semifinite w.r.t. µ

∞, if E is not semifinite w.r.t. µ

It is clear that ν(∅) = 0, so let (Aj)
∞
1 ⊂ M be a disjoint sequence. If µ(

⋃∞
1 Aj) < ∞, then

µ(Aj) <∞ for all j ∈ N, so ν(
⋃∞

1 Aj) = 0 =
∑∞

1 ν(Aj).

Next, suppose that µ(
⋃∞

1 Aj) = ∞. If
⋃∞

1 Aj is semifinite w.r.t. µ, then ν(
⋃∞

1 Aj) = 0. Moreover
it is clear that Aj is either finite or semifinite w.r.t. µ for all j ∈ N. Thus,

∑∞
1 ν(Aj) = 0.

If
⋃∞

1 Aj is not semifinite, then ν(
⋃∞

1 Aj) = ∞ and there exists B ⊆
⋃∞

j=1, µ(B) = ∞ such that for
all B′ ⊆ B, µ(B′) = 0 or µ(B′) = ∞. Then since B =

⋃∞
1 B∩Aj, so µ(B∩Aj) = 0 or µ(B∩Aj) = ∞.

Since µ(B) = ∞, then there must be some Ak such that µ(B ∩ Ak) = ∞, so µ(Ak) = ∞. It is clear
that Ak cannot be semifinite since µ(B ∩ Ak) = ∞. Therefore,

ν

(
∞⋃
j=1

Aj

)
= ∞ =

∞∑
j=1

ν(Aj)

So ν is a measure on M and it is clear that µ = µ0 + ν.

3.15 Folland 1.16

Let (X,M, µ) be a measure space. A set E ⊆ X is called locally measurable if E ∩A ∈ M for all A ∈ M
where µ(A) < ∞. Let M̃ be the collection of all locally measurable sets. Clearly M ⊆ M̃. If M = M̃,
then we say that µ is saturated.

(a) If µ is σ-finite, then µ is saturated.

(b) M̃ is a σ-algebra.

(c) Define µ̃ : M̃ → [0,∞] by

µ̃(E) =

{
µ(E), if E ∈ M
∞, otherwise.

Then µ̃ is a saturated measure on M̃, called the saturation of µ.

(d) If µ is complete, so is µ̃.

(e) Suppose that µ is semifinite. For E ∈ M̃, define

µ(E) = sup{µ(A) : A ∈ M, A ⊂ E}

Then µ is a saturated measure on M̃ that extends µ.

(f) Let X1, X2 be disjoint uncountable sets, X = X1 ∪ X2 and M the σ-algebra of countable or co-
countable sets in X. Let µ0 be the counting measure on P(X1) and define µ on M by µ(E) =
µ0(E∩X1). Then µ is a measure on M, M̃ = P(X), and in the notation of parts (c) and (e), µ̃ ̸= µ.
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Tools:

� Def: (complete measure). A measure is called complete if the σ-algebra it acts upon contains all
subsets of null sets.

� Def: (counting measure). The counting measure, µ0 : P(X) → [0,∞], is defined as

µ0(E) =

{
card(E), E finite

∞, otherwise

� Def: (co-countable). A set E is called co-countable if Ec is countable. The set of co-countable sets
forms a σ-algebra.

Solution:

(a) Let µ be σ-finite and let E ∈ M̃. Since µ is σ-finite, there exists (Ej)
∞
1 ⊂ M such that

X =
∞⋃
j=1

Ej, µ(Ej) <∞, for all j ∈ N.

Since E ⊂ X and E is locally measurable, then

E = E ∩X = E ∩

(
∞⋃
j=1

Ej

)
=

∞⋃
j=1

E ∩ Ej ∈ M

so M̃ ⊆ M implies M̃ = M.

(b) Let E ∈ M̃. Since E is locally measurable, then for all A ∈ M with µ(A) <∞,

(E ∩ A) ∪ Ac = (E ∪ Ac) ∩ (A ∪ Ac) = (E ∪ Ac) ∩X = (E ∪ Ac) ∈ M

so (E ∪ Ac)c = Ec ∩ A ∈ M. Since this holds for all such A, then Ec ∈ M̃.

Now let (Ej)
∞
1 ⊂ M̃. For any A ∈ M where µ(A) <∞,(

∞⋃
j=1

Ej

)
∩ A =

∞⋃
j=1

A ∩ Ej ∈ M

so M̃ is a σ-alg.

(c) We’ll first show µ̃ is a measure on M̃. It’s clear that µ̃(∅) = 0. Let (Ej)
∞
1 ⊂ M̃ be disjoint. If

Ej ∈ M for all j ∈ N, then it’s clear that

µ̃

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

Ej

)
=

∞∑
j=1

µ(Ej) =
∞∑
j=1

µ̃(Ej)

Otherwise, there exists k ∈ N such that Ek ̸∈ M, so

µ̃

(
∞⋃
j=1

Ej

)
= ∞ =

∞∑
j=1

µ̃(Ej)
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so µ̃ is a measure on M̃.

Next, to show µ̃ is saturated on M̃, let E be locally measurable on M̃, i.e. E ∈ ˜̃M. Now let
B ∈ M ⊆ M̃ with µ(B) <∞, so

µ̃(B) = µ(B) <∞.

Thus, E ∩ B ∈ M̃, but since E ∩ B is locally measurable on M, then (E ∩ B) ∩ B = E ∩ B ∈ M,

so E is locally measurable on M . Thus, M̃ = ˜̃M, so µ̃ is saturated on M̃.

(d) Let C ∈ M̃ be a null set. Then µ̃(N) = 0, so N ∈ M. Since µ is complete, then for any F ⊂ N,
F ∈ M ⊆ M̃.

(e) To show µ is a measure, it is clear µ(∅) = 0. Now let (Ej)
∞
1 ⊂ M̃ be disjoint and let E =

⋃∞
1 Ej.

If µ(E) <∞, then for all A ⊆ E, µ(A) <∞ so by Folland 1.15a, µ is a measure.

If µ(E) = ∞, then consider A ∈ M with A ⊆ E, so A =
⋃∞

1 A ∩ Ej. Then

µ(A) =
∞∑
j=1

µ(A ∩ Ej) ≤
∞∑
j=1

µ(Ej)

by definition of µ. Taking the sup over all such A, we have

sup
A∈M
A⊆E

µ(A) = µ(E) ≤
∞∑
j=1

µ(Ej).

Now suppose by contradiction that µ(E) <
∑∞

1 µ(Ej). Then for all j ∈ N, there exists Aj ∈ M with
Aj ⊆ Ej such that

µ(Ej)−
δ

2
· 2−j < µ(Aj) ≤ µ(Ej)

where δ =
∑∞

1 µ(Ej)− µ(E). Since (Ej)
∞
1 is disjoint, then so is (Aj)

∞
1 , so

µ

(
∞⋃
j=1

Aj

)
=

∞∑
j=1

µ(Aj) >
∞∑
j=1

µ(Ej)−
δ

2

Hence, we see that

µ(E) <
∞∑
j=1

µ(Ej)−
δ

2
< µ

(
∞⋃
j=1

Aj

)
≤ µ(E)

a contradiction. Thus, µ(E) =
∑∞

1 µ(Ej)

Last, to show µ is saturated on M̃, let E be locally measurable on M̃. Let B ∈ M with µ(B) <∞.

Then B ∈ M̃ since µ(B) <∞ implies µ(B) <∞, so E ∩B ∈ M̃, hence (E ∩B)∩B = E ∩B ∈ M.

Thus, E is locally measurable on M, so M̃ = ˜̃M.

(f) First, to show µ is a measure, it is clear that µ(∅) = 0, so let (Aj)
∞
1 ⊂ M be disjoint. Then

µ(A) = µ0(A ∩X1) = µ0

(
∞⋃
j=1

Aj ∩X1

)
=

∞∑
j=1

µ0(Aj ∩X1) =
∞∑
j=1

µ(Aj).

so µ is a measure on M.
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If A is countable, then E ∩ A is countable, so E ∩ A ∈ M, so E ∈ M̃, hence P(X) = M̃. On the
other hand, if A is co-countable, then Ac is countable, but since µ0(A∩X1) <∞, then Ac∪ (A∩X1)
is also countable, but notice

Ac ∪ (A ∩X1) = (Ac ∪ A) ∩ (Ac ∪X1) = X ∩ (Ac ∪X1) = Ac ∪X1

but X1 ⊂ Ac ∪X1 which contradicts that X1 is uncountable. Thus, E ∩A ∈ M for all A ∈ M with
µ(A) <∞, so E is locally measurable on M. Hence M = P(X).

Last, to show µ̃ ̸= µ simply consider µ̃(X2) = ∞ since X2 is neither countable nor co-countable. But
µ(X2) = 0 since X1 and X2 are disjoint. ■

3.16 Folland 1.17

If µ∗ is an outer measure on X and (Aj)
∞
1 is a sequence of disjoint µ∗-measurable sets, then µ∗(E ∩

(
⋃∞

1 Aj)) =
∑∞

1 µ∗(E ∩ Aj) for any E ⊆ X.

Tools:

� Def: (outer measure). An outer measure on a nonempty set X is a function µ∗ : P(X) → [0,∞]
such that

(i) µ∗(∅) = 0

(ii) µ∗(A) ≤ µ∗(B) if A ⊆ B (monotonicity)

(iii) µ∗(
⋃∞

1 Aj) ≤
∑∞

1 µ∗(Aj) (subadditivity)

� Def: (µ∗-measurable set). A set A ⊆ X is called µ∗-measurable if µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac)
for any E ⊆ X. Whenever A ⊆ E, we can think of this definition as saying the outer measure of A
is equal to the ”inner measure” of A

Solution: Let E ⊆ X. Since each Aj is µ
∗-measurable, then observe

µ∗

(
E ∩

(
∞⋃
j=1

Aj

))
= µ∗

(
E ∩

(
∞⋃
j=1

Aj

)
∩ A1

)
+ µ∗

(
E ∩

(
∞⋃
j=1

Aj

)
∩ Ac

1

)

= µ∗(E ∩ A1) + µ∗

(
E ∩

(
∞⋃
j=2

Aj

))
since (Aj)

∞
1 is disjoint. By induction, we see that

µ∗

(
E ∩

(
∞⋃
j=1

Aj

))
=

n∑
j=1

µ∗(E ∩ Aj) + µ∗

(
E ∩

(
∞⋃

j=n+1

Aj

))
taking n→ ∞ we have

µ∗

(
E ∩

(
∞⋃
j=1

Aj

))
=

∞∑
j=1

µ∗(E ∩ Aj) + lim
n→∞

µ∗

(
E ∩

(
∞⋃

j=n+1

Aj

))
≥

∞∑
j=1

µ∗(E ∩ Aj)

and since µ∗(E ∩ (
⋃∞

1 Aj)) ≤
∑∞

1 µ∗(E ∩ Aj) by definition of the outer measure, then we are done. ■
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3.17 UCR RA Qual 2019

State the definition that a set in R is Lebesgue measurable. Prove that every countable set in R is Lebesgue
measurable.

Tools:

� Def: (Lebesgue outer measure). The Lebesgue outer measure is defined as

m∗(E) = inf

{
∞∑
j=1

bj − aj : E ⊆
∞⋃
j=1

(aj, bj)

}

where the restriction of m∗ to Lebesgue-measurable sets is called the Lebesgue measure. Note the set
of Lebesgue-measurable sets is strictly larger than the Borel σ-algebra on R

Solution: Given a set E ⊆ R, E is Lebesgue-measurable if for all A ⊆ R,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

Let E ⊂ R be countable, then we may write E = {x1, x2, . . . } and the family,(
xj −

ϵ

2j+1
, xj +

ϵ

2j+1

)∞
j=0

, ϵ > 0

is a countable cover of E. And since

m∗(E) ≤
∞∑
j=1

xj +
ϵ

2j+1
−
(
xj −

ϵ

2j+1

)
=

∞∑
j=1

ϵ

2j+1
=
ϵ

2

so we have that m∗(E) = 0. Thus, for any A ⊆ R. Then

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec) = m∗(A ∩ Ec) ≤ m∗(A)

■

3.18 UCR RA Qual 2018

Show that the Dominated Convergence Theorem follows from Fatou’s Lemma.

Tools:

� Def: (measurable function). Let (X,M) and (Y,N ) be measurable spaces (i.e. a set and its σ-alg.).
Then a function f : X → Y is called (M,N )-measurable or just measurable if for every E ∈ N ,
f−1(E) ∈ M. This is a direct analog of continuous functions on topological/metric spaces.

� Proposition 2.11b (Folland): The following implication is valid iff the measure µ is complete:
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(b) If fn is measurable for all n ∈ N and fn → f µ-a.e., then f is measurable.

� Propsition 2.12 (Folland): Let (X,M, µ) be a measure space and (X,M, µ) be its completion. If f
is a M-measurable function on X, then there is a M-measurable function g on X such that f = g
µ-a.e.

� Lemma 2.18 (Folland): (Fatou’s Lemma). If (fn)
∞
1 is any sequence contained in L+, (the set of

measurable functions from X to [0,∞]), then∫
X

lim inf fn ≤ lim inf

∫
X

fn

� Theorem 2.24 (Folland): (Dominated Convergence Theorem), Let (fn)
∞
1 ⊆ L1(X) such that

(a) fn → f µ-a.e.

(b) There exists g ∈ L1, g ≥ 0 such that |fn| ≤ g µ-a.e. for all n

Then f ∈ L1 and
∫
X
f = limn→∞

∫
X
fn.

� Recall that lim inf S = − lim sup(−S)

Solution: Let (X,M, µ) be a measure space, (X,M, µ) its completion, and assume the hypothesis of the
Dominated Convergence Theorem. Since fn → f µ-a.e. then fn → f µ-a.e. since µ(E) = 0 =⇒ µ(E) = 0.
Thus, by proposition 2.11b, f isM-measurable. Thus, by proposition 2.12, there exists a h,M-measurable,
such that f = h µ-a.e. Let N ∈ M be the µ-null set such that f ̸= h on N . Then define h by

h(x) =

{
h(x), x ∈ N c

f(x), x ∈ N

Then f = h for all x ∈ X and f = h is still M-measurable. Moreover, since fn → f µ-a.e. then for ϵ > 0
and x ∈ X, there exists N ∈ N such that |fn(x)− f(x)| < ϵ for n ≥ N. Thus,

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ϵ+ g.

Thus, |f | ≤ g, so ∫
X

|f | ≤
∫
g <∞

which means f ∈ L1(X). Since fn and f are complex-valued, by taking their real and imaginary parts, it
suffices to assume that fn and f are real-valued, in which case, we have g + fn ≥ 0 and g − fn ≥ 0 µ-a.e.
Thus, by Fatou’s lemma,∫

X

g +

∫
X

f =

∫
X

(g + lim inf fn) ≤ lim inf

∫
X

(g + fn) =

∫
X

g + lim inf

∫
X

fn.∫
X

g −
∫
X

f =

∫
X

(g − lim inf fn) ≤ lim inf

∫
X

(g − fn) =

∫
X

g − lim sup

∫
X

fn

Thus, we see that

lim sup

∫
X

fn ≤
∫
X

f ≤ lim inf

∫
X

fn

so we have that limn→∞
∫
X
fn =

∫
X
f.
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3.19 UCR RA Qual 2018

Use Egoroff’s theorem to prove the Dominated Convergence theorem for measurable functions on the
interval [0, 1] with Lebesgue measure.

Tools:

� Theorem 2.33 (Folland). (Egoroff’s Theorem). Suppose that µ(X) < ∞ and f1, f2, . . . and f are
measurable complex-valued functions on X such that fn → f a.e. Then for every ϵ > 0, there exists
E ⊆ X such that µ(E) < ϵ and fn → f uniformly on Ec.

� Corollary 3.6 (Folland). If f ∈ L1(µ), for every ϵ > 0 there exists δ > 0 such that |
∫
E
fdµ| < ϵ

whenever µ(E) < δ.

Solution: Assume the hypothesis of the DCT and assume f is a Lebesgue-measurable complex-valued
function on [0, 1] and let ϵ > 0. Since fn → f m-a.e. then for x ∈ [0, 1], |f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| <
ϵ+ g for n sufficiently large. Thus, |f | ≤ g, so f ∈ L1(m). Moreover, by corr. 3.6, there exists δ such that
|
∫
E
g dm| < ϵ

3
when µ(E) < δ.

Since m([0, 1]) = 1 < ∞, by Egoroff’s theorem, there exists E ⊆ X such that µ(E) < δ and fn → f
uniformly on Ec, hence there exists some N ∈ N such that ∥fn − f∥∞ < ϵ

3
for n ≥ N . Thus, we see that∣∣∣∣∫ 1

0

fn −
∫ 1

0

f

∣∣∣∣ ≤ ∫ 1

0

|fn − f |

=

∫
E

|fn − f |+
∫
Ec

|fn − f |

≤ 2

∫
E

g +

∫
Ec

|fn − f |

<
2ϵ

3
+ ∥fn − f∥∞ ·m([0, 1])

<
2ϵ

3
+
ϵ

3
= ϵ

Therefore, limn→∞
∫ 1

0
fn =

∫ 1

0
f. ■

3.20 UCR RA Qual 2017

Prove or disprove: if the functions fn : [0, 1] → R are continuous and for every x ∈ [0, 1] we have

limn→∞ fn(x) = 0, then limn→∞
∫ 1

0
fn(x)dx = 0.

39



Solution: False, consider the example fn(x) = nx(1 − x2)n for all n ∈ N. We know that fn(x) is
continuous on [0, 1] and for x ∈ (0, 1)

lim
n→∞

nx(1− x2)n = lim
n→∞

(1− x2)n

n
= lim

n→∞
(1− x2)n ln(1− x2)

= 0

since (1− x2) < 1 for x ∈ (0, 1). Now observe that∫ 1

0

nx(1− x2)ndx =

∫ 1

0

n

2
xndx =

n

2(n+ 1)

which converges to 1/2 ̸= 0.

3.21 UCR RA Qual 2020

Suppose fn, f ∈ L1([0, 1]). Show that if fn → f in measure then

lim
n→∞

∫ 1

0

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dx

Tools:

� Def. (convergence in measure). Let (X,M, µ) be a measure space and let (fn)
∞
1 be a sequence of

complex-valued measurable functions on X. Then fn → f in measure if for any ϵ > 0,

µ({x ∈ X : |fn(x)− f(x)| ≥ ϵ}) → 0.

Solution: Let ϵ > 0. Since fn → f in measure then let En =
{
x ∈ [0, 1] : |fn(x)− f(x)| ≥ ϵ

2

}
. Moreover,

since µ(En) → 0 as n → ∞, then there exists some N ∈ N such that µ(En) ≤ ϵ
2
for n ≥ N. Thus, for

n ≥ N , observe that∣∣∣∣∫ 1

0

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dx

∣∣∣∣ = ∫ 1

0

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dx

=

∫
En

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dx+

∫
Ec

n

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dx

≤
∫
En

dx+

∫
Ec

n

|fn(x)− f(x)|dx

<
ϵ

2
+
ϵ

2
= ϵ. ■

3.22 UCR RA Qual 2020

Let f be a bounded measurable function and g be an integrable function on R. Prove that

lim
h→0

∫ ∞

−∞
f(x)(g(x+ h)− g(x))dx = 0.
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Tools:

� The Lebesgue integral is translation invariant.

� Prop 1.20 (Folland) If E ∈ Mµ and µ(E) <∞, then for every ϵ > 0 there is a set A that is a finite
union of open intervals such that µ(E△A) < ϵ.

� Folland 1.12

� Thm 2.26 (Folland) If f ∈ L1(µ) and ϵ > 0, there is an integrable simple function ϕ =
∑n

1 ajχEj

such that
∫
|f − ϕ|dµ < ϵ. That is, the integrable simple functions are dense in L1 in its metric.

Solution: Let ϵ > 0 and let µ be the Lebesgue measure and L the set of Lebesgue measurable sets. Since
f is bounded, there exists some M ∈ R such that |f | ≤ M. Since g is integrable, we know that g ∈ L1.
Also, gh := g(x + h) ∈ L1 by the translation invariance of the Lebesgue integral. Thus, by theorem 2.26,
there exists some simple integrable function k =

∑n
1 ajχEj

such that ∥k − g∥1 < ϵ
3M

. Now, define

A+ c = {x+ c : x ∈ A}

where A ⊆ R and c ∈ R. Then let kh =
∑n

1 ajχ(Ej−h) so that ∥gh − kh∥1 < ϵ
3M

is clear by change of
variables.

Since k is integrable, we know µ(Ej) < ∞ for all 1 ≤ j ≤ n, so by proposition 1.20, we know
that there exists Aj such that Aj =

⋃mj

k=1(ak, bk) and µ(Ej△Aj) <
ϵ

9n|aj |M . Similarly, by translation,

µ((Ej − h)△(Aj − h)) < ϵ
9n|aj |M . Let m := max{mj : 1 ≤ j ≤ n}.

Thus, observe that∣∣∣∣∫
R
f(x)(g(x+ h)− g(x))dx

∣∣∣∣ ≤M

∫
R
|g(x+ h)− g(x)|dx

=M∥gh − g∥1
≤M(∥gh − kh∥1 + ∥kh − k∥1 + ∥k − g∥1)
< M

(
2 ϵ
3M

+ ∥kh − k∥1
)

(∗)

Expanding ∥kh − k∥1, we see that

∥kh − k∥1 =
∫
R

∣∣∣∣∣
n∑
1

aj(χ(Ej−h) − χEj
)

∣∣∣∣∣ dx =

∫
R

∣∣∣∣∣
n∑
1

ajχ((Ej−h)△Ej)

∣∣∣∣∣ dx
≤

n∑
1

|aj|
∫
R
χ((Ej−h)△Ej)dx

=
n∑
1

|aj|µ((Ej − h)△Ej) (∗∗)

Now by Folland 1.12, we know that ρ(E,F ) = µ(E△F ) defines a metric on the set L/∼ where E ∼ F if
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ρ(E,F ) = 0. Thus, by the translation invariance of µ,

µ((Ej − h)△Ej) ≤ µ((Ej − h)△(Aj − h)) + µ((Aj − h)△Aj) + µ(Aj△Ej)

< 2 ϵ
9n|aj |M + µ((Aj − h)△Aj)

= 2 ϵ
9n|aj |M + 2µ((Aj − h) ∪ Aj)− 2µ(Aj)

= 2 ϵ
9n|aj |M + 2µ

(
mj⋃
k=1

(ak − h, bk)

)
− 2µ(Aj)

≤ 2 ϵ
9n|aj |M + 2 (mjh+ µ(Aj))− 2µ(Aj)

= 2 ϵ
9n|aj |M + 2mjh

Thus, by choosing |h| < ϵ
18mn|aj |M , we have

2 ϵ
9n|aj |M + 2mjh < 2 ϵ

9n|aj |M + 2mj
ϵ

18mn|aj |M < ϵ
3n|aj |M

Plugging this back into (∗∗), we have

n∑
j=1

|aj|µ((Ej − h)△Ej) <
n∑

j=1

|aj| ϵ
3n|aj |M =

ϵ

3M

which we plug into (∗) to see∣∣∣∣∫
R
f(x)(g(x+ h)− g(x))dx

∣∣∣∣ ≤M

∫
R
|g(x+ h)− g(x)|dx < M(2 ϵ

3M
+ ∥kh − k∥1)

< M(2 ϵ
3M

+ ϵ
3M

)

= ϵ

Hence,

lim
h→0

∫ ∞

−∞
f(x)(g(x+ h)− g(x))dx = 0.

3.23 UCR RA Qual 2018

Let fn be a sequence of measurable real-valued functions on R. Show that

A = {x ∈ R : lim
n→∞

fn(x) exists}

is measurable.

Tools:

� Recall that the Lebesgue measurable sets over R form a σ-algebra.
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Solution: First fix x ∈ A. Since fn(x) converges, then fn(x) is Cauchy in R. Thus, by the Archimedian
property, fn(x) is Cauchy iff for all j ∈ N, there exists Nj ∈ N such that for all m,n ≥ Nj,

|fn(x)− fm(x)| <
1

j
.

In set-theoretic notation, A is equivalent to⋂
j∈N

⋃
N∈N

⋂
m,n≥N

{x ∈ R : |fn(x)− fm(x)| < 1
j
}

However, we know that fn − fm is a measurable function so it must be that

{x ∈ R : |fn(x)− fm(x)| < 1
j
} = (fn − fm)

−1(−1
j
, 1
j
)

is measurable as well. Thus, A can be expressed in terms of countable unions and intersections of measur-
able sets, so A must be measurable.

3.24 Example/Counterexample

In the hypothesis of the Fubini-Tonelli theorem, the 2 measures in question must be σ-finite. Show that
the theorem does not hold when either of the measure are not.

Solution: Consider I = [0, 1] and the Borel sets on I. Let µ be the Lebesgue measure on BI and ν be
the counting measure on 2I . Then it is clear that ν is not σ-finite while µ is σ-finite.

Let ∆ = {(x, x) : x ∈ I}. Then we know that ∆ is a closed subset of I2. Thus, ∆ ∈ BI2 and since
I is separable, then we know BI2 = BI × BI ⊂ BI × 2I . Thus, χ∆ is measurable (via restricting χBI×2I ).
Moreover, recall that ∆x = {y ∈ I : (x, y) ∈ ∆} = {(x, x)}.∫

I

(∫
I

χ∆(x, y)dν(y)

)
dµ(x) =

∫
I

(∫
I

χ∆x(y)dν(y)

)
dµ(x)

=

∫
I

ν({x})dµ(x)

= ν({x})µ(I)
= 1

However, observe on the other hand that∫
I

(∫
I

χ∆(x, y)dµ(x)

)
dν(y) =

∫
I

(∫
I

χ∆y(x)dµ(x)

)
dν(y)

=

∫
I

µ({y})dν(x)

=

∫
I

0dν(x)

= 0
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3.25 Example/Counterexample

Show that Fubini’s theorem does not hold for f ̸∈ L1(µ× ν) for some choice of µ and ν.

Solution: Consider the case where µ, ν are both Lebesgue measure on BI where I = [0, 1] and consider
the function

f(x, y) =
x2 − y2

(x2 + y2)2

which is continuous except at the origin, hence making it measurable on I2.

4 Part B Exercises

4.1 Folland 3.1

Prove proposition 3.1: Let ν be a signed measure on (X,M). If (Ej)
∞
1 ⊂ M is an increasing sequence

then ν(
⋃∞

1 Ej) = limj→∞ ν(Ej). If (Ej)
∞
1 ⊂ M is a decreasing sequence and ν(E1) <∞ then ν(

⋂∞
1 Ej) =

limj→∞ ν(Ej).

Solution: Let (Ej)
∞
1 ⊂ M be an increasing sequence. Then let F0 = ∅ and Fk = Ek\Ek−1 for all k ∈ N,

then (Fj)
∞
1 ⊂ M is disjoint, so

ν

(
∞⋃
j=1

Fj

)
=

∞∑
j=1

ν(Fj) = lim
n→∞

n∑
j=1

ν(Ej)− ν(Ej−1) = lim
n→∞

ν(En)

Now suppose that (Ej)
∞
1 is decreasing with ν(E1) < ∞. Then let Fj = E1\Ej for j ∈ N. We see that

ν(E1) = ν(Fj) + ν(Ej) and
⋃∞

1 Fj = E1\(
⋂∞

1 Ej), so

ν(E1) = ν

(
∞⋂
j=1

Ej

)
+ ν

(
∞⋃
j=1

Fj

)
= ν

(
∞⋂
j=1

Ej

)
+ lim

n→∞
ν(Fn)

= ν

(
∞⋂
j=1

Ej

)
+ lim

n→∞
[ν(E1)− ν(En)]

Thus, moving terms around gives the desired result. ■

4.2 UCR RA Qual 2020

Give a function f : [0, 1] → R that is differentiable at every point (including endpoints, where we use the
one-sided derivative) but is not of bounded variation. Prove that it has these properties.
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Tools:

� Def. (bounded variation). Given a function f : R → C, we say that f is of bounded variation on
[a, b], denoted f ∈ BC([a, b]) if the total variation of f on [a, b] is finite. Total variation on [a, b] is
defined as

Tf ([a, b]) = sup

{
n∑

j=1

|f(xj)− f(xj−1) : n ∈ N, a = x0 < x1 < · · · < xn = b

}

� UCR RA Qual. 2019, undergrad, problem 1. (Solved)

Solution: Consider the following function on [0, 1]

f(x) =

{
x2 sin(1/x), x ̸= 0

0, x = 0

Then it is clear that f(x) is differentiable on [0, 1] with derivative

f ′(x) =

{
2x sin(1/x)− cos(1/x), x ̸= 0

0, x = 0

To show that f ′ is not of bounded variation, consider the sequence xj =
1
jπ
. Then for any n ∈ N,

Tf ([0, 1]) ≥
n∑

j=2

∣∣∣ 2
jπ

sin(jπ)− cos(jπ)− 2
(j−1)π

sin((j − 1)π) + cos((j − 1)π)
∣∣∣+

+ | 2
π
sin(π)− cos(π)|

= 1 +
n∑

j=2

| − 2|

= 2n− 1

Hence, Tf ([0, 1]) ≥ n for all n ∈ N, so f ′ ̸∈ BV ([0, 1]).

4.3 Folland 3.13

Let X = [0, 1], M = B[0,1], m = Lebesgue measure on [0, 1] and µ the counting measure on M.

(a) m≪ µ but dm ̸= fdµ for any f .

(b) µ has no Lebesgue decomposition w.r.t. m.

Tools:

� Def. (mutually singular). Given two signed measure ν and µ on (X,M), we say that ν, µ are
mutually singular if there exists sets E,F ∈ M such that E ∩ F = 0, E ∪ F = X and E is µ-null
and F is ν-null.
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� Def. (absolutely continuous). Given a signed measure ν and positive measure µ, we say that ν is
absolutely continuous with respect to µ, or ν ≪ µ, if ν(E) = 0 for every E ∈ M for which µ(E) = 0.
Absolute continuity is, in a sense, the antithesis of mutual singularity.

� If ν(E) =
∫
E
fdµ for all E ∈ M then we denote this relationship by dν = fdµ

� Theorem 3.8 (Folland). (The Lebesgue-Radon-Nikodym theorem). Let ν be a σ-finite signed measure
and µ a σ-finite positive measure on (X,M). Then there exist unique σ-finite signed measures λ, ρ
on (X,M) such that

λ ⊥ µ, ρ≪ µ, and ν = λ+ ρ

Moreover, there is an extended µ-integrable function f : X → R such that dρ = fdµ, and any two
such functions are equal µ-a.e.

The decomposition ν = λ + ρ where λ ⊥ µ and ρ ≪ µ is called the Lebesgue decomposition of ν
w.r.t. µ. If ν ≪ µ, then an immediate consequence of theorem 3.8 is that dν = fdµ for some f. This
result is known as the Radon-Nikodym theorem and f is called the Radon-Nikodym derivative of ν
w.r.t. µ and is commonly denoted f = dν/dµ so that

dν =
dν

dµ
dµ.

Solution:

(a) If E ∈ M and µ(E) = 0, then E = ∅. Thus, it is clear that m(E) = 0, so m ≪ µ. Now suppose by
contradiction that there exists some f : X → C such that dm = fdµ. Then,

m(E) =

∫
E

fdµ, for all E ∈ M

Then for any x ∈ X, we know that {x} ∈ M since singletons are closed. Thus, we see that

m({x}) = 0 =

∫
{x}

fdµ = f(x)

since we are integrating w.r.t. the counting measure. Thus, f must be the zero function, in which
case,

m(X) = 1 =

∫
X

fdµ = 0.

a contradiction. Thus, no such f exists.

(b) Suppose that a Lebesgue decomposition of µ w.r.t. m exists. Then there are unique signed measures
λ, ρ such that λ ⊥ m, ρ ≪ m and µ = λ+ ρ. Since λ is mutually singular with m, then there exists
sets E,F ∈ M such that E ∪ F = X, E ∩ F = ∅ and E is m-null, and F is λ-null.

Observe that F cannot be empty, otherwise m(X) = m(E ∪F ) = m(E)+m(F ) = 0+0. Thus, there
exists some x ∈ F. Now consider {x} ∈ M, so

1 = µ({x}) = (λ+ ρ)({x}) ≤ λ(F ) + ρ(F ) = 0

a contradiction. ■
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4.4 Folland 3.2

If ν is a signed measure, E is ν-null iff |ν|(E) = 0. Also if ν and µ are signed measures, ν ⊥ µ iff |ν| ⊥ µ
iff ν+ ⊥ µ and ν− ⊥ µ.

Tools:

� Def. (µ-null). A set E ∈ M is null w.r.t. a measure µ or µ-null if for every F ⊆ E, µ(F ) = 0.

� Theorem 3.3 (Folland). (Hahn-Decomposition theorem). If ν is a signed measure on (X,M) then
there exists a positive set P and negative set N such that P ∪ N = X, P ∩ N = ∅. If P ′, N ′ is
another such pair, then P△P ′ and N△N ′ are both ν-null.

� Theorem 3.4 (Folland). (Jordan-Decomposition theorem). If ν is a signed measure, then there exists
unique positive measures ν+, ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Solution: Suppose that E is ν-null. If P,N is a Hahn-decomposition of ν, then E ∩ P and E ∩ N
are both also ν-null. So it is clear that ν(E ∩ P ) = ν+(E) = 0 and ν(E ∩ N) = ν−(E) = 0, so
|ν|(E) = ν+(E) + ν−(E) = 0.

Next, if ν ⊥ µ then there exists sets E,F such that E ∪ F = X, E ∩ F = ∅ and E is ν-null, and F is
µ-null. Then for every Ẽ ⊆ E, |ν|(Ẽ) = 0, so E is |ν|-null, so |ν| ⊥ µ.

If |ν| ⊥ µ then since ν+ and ν− are bounded by |ν| then we know that ν+ ⊥ µ and ν− ⊥ µ.

Last, if ν+ ⊥ µ and ν− ⊥ µ then there are sets E+, F+, E−, F− such that E+∪F+ = X = E−∪F− and
E+ ∩ F+ = ∅ = E− ∩ F−, with E+ ν+-null, E− ν−-null and F+, F− µ-null. Then consider E = E+ ∩E−

and F = F+ ∪ F−, so that E is ν-null since ν = ν+ − ν− and F is µ-null. Moreover, it is clear that
E ∪ F = X and E ∩ F = ∅, so ν ⊥ µ. ■

4.5 UCR RA Qual 2016

Show that every weakly convergent sequence in a Banach space X is bounded with respect to the norm of
the Banach space.

Tools:

� Def. (weak convergence) If X is a normed vector space, then we say that a sequence (xn)
∞
1 converges

weakly to x ∈ X if f(xn) → f(x) for all f ∈ X∗, its dual space.

� Theorem 5.8d (Folland). If x ∈ X, define x̂ : X∗ → C be x̂(f) = f(x). Then the map x 7→ x̂ is a
linear isometry from X into X∗∗ (the dual of X∗).

� Theorem 5.13 (Folland). (The Uniform Boundedness Principle) Suppose that X, Y are normed vector
spaces and A is a subset of L(X, Y ).
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(a) If supT∈A ∥T (x)∥Y <∞ for all x in some nonmeager subset of X, then supT∈A ∥T∥ <∞
(b) If X is a Banach space and supT∈A ∥T (x)∥Y <∞ for all x ∈ X, then supT∈A ∥T∥ <∞.

� If X is a normed vector space then X∗, its dual space, is a Banach space with the operator norm.

Solution: Let (xn)
∞
1 be a weakly convergent sequence in X to some x ∈ X. We want to show that

supn∈N ∥xn∥X < ∞. By the definition of weak convergence, we know that for every bounded linear
functional f ∈ X∗, f(xn) → f(x) in C. By theorem 5.8d, we know that we may define a map x 7→ x̂ where
x̂ : X∗ → C with x̂(f) = f(x) and such a mapping is a linear isometry from X to X∗∗. Thus,

sup
n∈N

∥x∥X = sup
n∈N

∥x̂n∥ = sup
n∈N

 sup
f∈X∗

∥f∥=1

|x̂n(f)|


and since f(xn) → f(x) in C, we know that

sup
n∈N

∥x̂n(f)∥ = sup
n∈N

|f(xn)| <∞

Thus, by the Uniform Boundedness Principle, we know that

sup
n∈N

∥x̂n(f)∥ <∞ =⇒ sup
n∈N

∥x̂∥X = sup
n∈N

∥x∥X <∞ ■

4.6 UCR 209B 2021 Final

Let X = [0, 2π] equipped with the Lebesgue measure.

(a) Let fn(x) = sin3(nx). Prove that fn converges to 0 weakly in L2. You may assume the Riemann
Lebesgue lemma.

(b) Prove that fn does not converge to 0 m-a.e.

Tools:

� Theorem 7.2 (Folland). (The Riesz Representation Theorem for Hilbert Spaces on R) Let H be a
Hilbert space with inner product ⟨·, ·⟩. For every continuous linear functions φ ∈ H∗, there exists a
unique fφ ∈ H such that

φ(x) = ⟨x, fφ⟩

for all x ∈ H. Note that if the underlying field is R then H is isometrically isomorphic to H∗.

� Theorem 8.22 (Folland). (Riemann-Lebesgue Lemma) F(L1(Rn)) ⊂ C0(Rn). Note F is the Fourier
transform.
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Solution: We first observe that L2[0, 2π] is a Hilbert space. Now, let T ∈ (L2[0, 2π])∗. In order to
show that T (fn) → 0, we apply the Riesz Representation theorem for Hilbert spaces, so there exists
gT ∈ L2[0, 2π] such that T (f) = ⟨f, gT ⟩ for all f ∈ L2[0, 2π]. Thus, it suffices to show that ⟨fn, gT ⟩ → 0.

Next, notice that

fn(x) = sin3(nx) =

(
einx − e−inx

2i

)3

= − 1

8i
(e3inx − 3einx + 3e−inx − e−3inx)

Thus,

⟨fn, gT ⟩ = − 1

8i

∫ 2π

0

(e3inx − 3einx + 3e−inx − e−3inx)gT dx

which are some of the Fourier coefficients of gT . Moreover, by Holder’s inequality,∫ 2π

0

|gT |dx ≤ ∥gT∥2∥1∥2 = ∥gT∥2 m([0, 2π]) <∞.

Thus, L2[0, 2π] ⊂ L1[0, 2π], so by the Riemann Lebesgue lemma, we know that ⟨fn, gT ⟩ → 0.

To show fn ̸→ 0 m-a.e., assume by contradiction that fn → 0, then we know f 2
n → 0 as well. It is

clear that f 2
n ∈ L1[0, 2π] for all n ∈ N and that f 2

n is dominated by 1. Thus, the Dominated Convergence
theorem implies that ∥fn∥22 → 0 as n→ ∞. However, observe that

∥fn∥22 =
∫ 2π

0

sin6(nx)dx =
5π

8
̸= 0

a contradiction. Thus, fn ̸→ 0 a.e.

4.7 UCR RA Qual 2016

Let g be a Lipschitz function on [0, 1] and f be an absolutely continuous function from [0, 1] → [0, 1].
Prove that the composite g ◦ f is also absolutely continuous.

Tools:

� Def. (absolutely continuous function) Let f : R → C. Then f is absolutely continuous on R if for
all ϵ > 0 there exists δ > 0 such that for any finite family of disjoint intervals {(aj, bj}Nj=1, N ∈ N,
then

N∑
1

(bj − aj) < δ =⇒
N∑
1

|f(bj)− f(aj)| < ϵ

Solution: Let ϵ > 0. Let C ∈ R be the Lipschitz constant of g. Since f is absolutely continuous on
[0, 1], then there exists δ such that

N∑
1

|f(bj)− f(aj)| <
ϵ

C
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whenever
∑N

1 (bj − aj) < δ for any finite family of disjoint intervals {(aj, bj)}N1 . Then since g is Lipschitz,

N∑
1

|(g ◦ f)(bj)− (g ◦ f)(aj)| ≤
N∑
1

C|f(bj)− f(aj)|

= C
N∑
1

|f(bj)− f(aj)|

< C
ϵ

C
= ϵ

4.8 UCR RA Qual 2016

Let F be the linear functional on C[−1, 1] defined by

F (x) =

∫ 0

−1

x(t)dt−
∫ 1

0

x(t)dt, ∀x ∈ C[−1, 1]

Prove that ∥F∥ = 2.

Solution: First observe that

∥F∥ = sup
x∈C[−1,1]
∥x∥∞=1

|F (x)|

= sup
x∈C[−1,1]
∥x∥∞=1

∣∣∣∣∫ 0

−1

x−
∫ 1

0

∣∣∣∣
≤ sup

x∈C[−1,1]
∥x∥∞=1

(∣∣∣∣∫ 0

−1

x

∣∣∣∣+ ∣∣∣∣∫ 1

0

x

∣∣∣∣)

≤ sup
x∈C[−1,1]
∥x∥∞=1

(∫ 1

−1

|x|
)

≤ ∥x∥∞
∫ 1

−1

dt

= 2.

Now suppose by contradiction that ∥F∥ < 2 and let δ = 2 − ∥F∥. Then there exists N ∈ N such that
1/N < δ, so consider the function xN(t) ∈ C[−1, 1] where

xN(t) =


1, 1/N < t ≤ 1

Nt, |t| ≤ 1/N

−1, −1 ≤ t < −1/N

It is clear that ∥xN∥∞ = 1. Next, observe that

|F (xN)| =
∣∣∣∣∫ 0

−1

xN −
∫ 1

0

xN

∣∣∣∣ = 2

∫ 1

0

xN = 2

(∫ 1/N

0

Ntdt+ (1− 1/N)

)
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and
∫ 1/N

0
Ntdt = 1/2N , so

|F (xN)| = 2(1/2N + 1− 1/N) = 2− 1/N > 2− δ > ∥F∥

a contradiction. Thus, ∥F∥ = 2.

4.9 Folland 3.22

If f ∈ L1(Rn), f ̸= 0, there exists C,R > 0 such that Hf(x) > C|x|−n for |x| > R.

Tools:

� Def. (Hardy-Littlewood maximal function). Let f ∈ L1
loc, i.e. that f is integrable on any bounded

measurable subset of Rn, then

H(f)(x) = sup
r>0

1

m(Br(x))

∫
Br(x)

|f(y)|dy

� Prop 2.16 (Folland) if f ∈ L+, then
∫
f = 0 iff f = 0 a.e.

Solution: We first observe that since f ̸= 0 and f ∈ L1(Rn), then for some R > 0,

0 <

∫
BR(0)

|f |dm <∞.

Otherwise, if no such R exists, then by proposition 2.16, |f | = 0 a.e. so f = 0. Now for x ∈ Rn with
|x| > R, we know that B2|x|(x) ⊃ BR(0). Moreover, by the translation invariance of the Lebesgue measure,
we know m(B2|x|(x)) = m(B2|x|(0)) = αn|x|n for some α ∈ R. Thus,

Hf(x) = sup
r>0

1

m(Br(x))

∫
Br(x)

|f(y)|dy

≥ 1

m(B2|x|(x))

∫
B2|x|(x)

|f |dm

=
1

αn

|x|−n

∫
B2|x|(x)

|f |dm

≥ 1

αn

|x|−n

∫
BR(0)

|f |dm

Thus, let C = 1
2αn

∫
BR(0)

|f |dm so that we have

Hf(x) > C|x|−n, for all |x| > R.

4.10 UCR 209B 2021 Final

Show that L2[0, 1] is a meager subset of L1[0, 1].
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Tools:

� Def. (meager set) If X is a topological space, a set E ⊆ X is called meager if E is a countable union
of nowhere dense sets. A set is called nowhere dense if its closure has empty interior (i.e. no point
in it can be contained in an open ball that’s contained in the set). Otherwise, E is called residual.
Intuitively, nowhere dense sets are naturally very small, so a meager set still has a sense of smallness,
but has nicer properties than nowhere dense sets. (σ-ideal).

� If fn → f in L1 then there is a subsequence of fn that converges to f µ-a.e.

� Thm 6.6 For every finite p, Lp is a Banach space.

� Lemma 2.18 (Fatou’s Lemma) If (fn)
∞
1 is any sequence in L+, then∫

(lim inf fn) ≤ lim inf

∫
fn.

� For fn, f : R → C, fn → f pointwise implies f 2
n → f 2.

Proof. Let f ≥ 0. Then since fn → f , for x ∈ R, there exists N1 ∈ N such that |fn(x) − f(x)| <
f(x)+1 for n ≥ N1, so fn(x) ∈ (−1, 2f(x)+1). Moreover, there is N2 ∈ N such that |fn(x)−f(x)| <
ϵ/|3f(x) + 1|, so for n ≥ N > max{N1, N2}, we have

|f 2
n(x)− f 2(x)| = |fn(x)− f(x)||fn(x) + f(x)| < ϵ

|3f(x) + 1)
|2f(x) + 1 + f(x)| = ϵ.

Solution: Consider the set Bn = {f ∈ L1[0, 1] : ∥f∥2 ≤ n}. Then it is clear that L2[0, 1] ⊆
⋃∞

1 Bn. Let
f ∈ Bn and h ∈ L1[0, 1]\L2[0, 1]. Then the sequence (f + 1

k
h)∞1 converges to f in L1 as k → ∞. Indeed,

∥f − f − 1
k
h∥1 = ∥ 1

k
h∥1 =

1

k
∥h∥1 → 0.

However, we observe that f + 1
k
h ̸∈ L2[0, 1] since h ̸∈ L2[0, 1]. Thus, h ̸∈ Bn for any n ∈ N, so Bn has

empty interior.

Now suppose that g is a limit point of Bn, so there exists a sequence (gk)
∞
1 ⊂ Bn such that gk → g

in L1 as k → ∞. We know g ∈ L1[0, 1] since L1[0, 1] is a Banach space. Moreover, since gk → g in L1

then there exists a subsequence (gkj)
∞
j=1 such that gkj → g pointwise a.e., hence g2kj → g2 pointwise, so by

Fatou’s lemma,

∥g∥2 =
(∫ 1

0

|g|2
)1/2

=

(∫ 1

0

lim inf
j→∞

|gkj |2
)1/2

≤ lim inf
j→∞

(∫ 1

0

|gkj |2
)1/2

= lim inf ∥gkj∥2
≤ n.

Therefore, Bn is closed for all n ∈ N, so L2[0, 1] is a meager subset of L1[0, 1].

52



4.11 Holder’s Inequality

Prove Holder’s inequality using Young’s inequality.

Tools:

� (Young’s Inequality) If a, b are nonnegative real number s and if p, q are conjugate exponents, then

ab ≤ ap

p
+
bq

q

where equality holds iff ap = bq.

� Thm 6.2 (Holder’s Inequality) Suppose p, q are conjugate exponents. If f, g are measurable
functions on X, then

∥fg∥1 ≤ ∥f∥p∥g∥q
In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1, and in this case equality holds above iff
α|f |p = β|g|q a.e. for some α, β not both zero.

Solution: We first observe that if either f or g is equal to 0 a.e., then Holder’s inequality holds. Similarly,
it clearly holds if ∥f∥p = ∞ or ∥g∥q = ∞.

For any x ∈ X, we know by Young’s inequality that

|f(x)|
∥f∥p

|g(x)|
∥g∥q

≤ |f(x)|p

p∥f∥pp
+

|g(x)|q

q∥g∥qq

Thus, we have that
|f |
∥f∥p

|g|
∥g∥q

≤ |f |p

p∥f∥pp
+

|g|q

q∥g∥qq
Integrating over X, we have

∥fg∥1
∥f∥p∥g∥q

≤ 1

p
+

1

q
= 1

Hence,
∥fg∥1 ≤ ∥f∥p∥g∥q

4.12 Minkowski’s Inequality

Prove Minkowski’s inequality using Holder’s inequality.

Tools:

� Thm 6.5 (Minkowski’s Inequality) If 1 ≤ p <∞ and f, g ∈ Lp, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.
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Solution: We first note that if p = 1 then∫
|f + g| ≤

∫
|f |+ |g| =

∫
|f |+

∫
|g| = ∥f∥1 + ∥g∥1

Also, if f + g = 0 a.e., then the result holds. Thus, we observe that

∥f + g∥pp =
∫

|f + g|p =
∫

|f + g| · |f + g|p−1 ≤
∫

|f(f + g)p−1|+
∫

|g(f + g)p−1|

Applying Holder’s inequality with q = p/(p− 1), we have∫
|f(f + g)p−1|+

∫
|g(f + g)p−1| = ∥f(f + g)p−1∥1 + ∥g(f + g)p−1∥1

≤ ∥f∥p∥(f + g)p−1∥q + ∥g∥p∥(f + g)p−1∥q

= (∥f∥p + ∥g∥p)
(∫ (

|f + g|p−1
)q)1/q

= (∥f∥p + ∥g∥p)∥f + g∥p−1
p

Thus, we have

∥f + g∥p = ∥f + g∥pp∥f + g∥1−p
p ≤ (∥f∥p + ∥g∥p)∥f + g∥p−1

p ∥f + g∥1−p
p = ∥f∥p + ∥g∥p

5 Part C Exercises

5.1 UCR RA Qual 2019

Show that the dual space of L∞[0, 1] strictly contains L1[0, 1]

Tools:

� Def: (dual space). Let X be a normed vector space and K = R or C (generally assume C). Then
the space L(X,K) of bounded linear functionals from X → K is called the dual space of X and is
also denoted X∗.

� Def: (operator norm). It is easily shown that L(X, Y ) is a vector space when X, Y are normed
vector spaces. Then the operator norm is a norm on L(X, Y ) where for T ∈ L(X, Y )

∥T∥ = sup
x∈X

∥x∥X=1

∥T (x)∥Y

� L∞(X) is the set of essentially bounded measurable functions.

L∞(X) = {f : X → C : f measurable, ∥f∥∞ <∞ µ-a.e.}

where ∥f∥∞ = supx∈X |f(x)|.
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� L1(X) is the set of integrable measurable functions.

L1(X) = {f : X → C : f measurable, ∥f∥1 <∞}

where ∥f∥1 =
∫
X
|f |.

� Def: (isometry). For T ∈ L(X, Y ), T is called an isometry if for all x ∈ X, ∥T (x)∥Y = ∥x∥X . Note
that an isometry is an embedding into Y and an isomorphism onto T (X), the range.

� Theorem 6.8a (Folland). If f, g are measurable functions on X, then ∥fg∥1 ≤ ∥f∥1∥g∥∞. This is
directly derived from Hölder’s inequality.

� Theorem 5.7 (Folland). (The Complex Hahn-Banach theorem). Let

(i) X be a complex vector space

(ii) ρ a seminorm on X

(iii) M a subspace of X

(iv) f a complex linear functional on M

such that |f(x)| ≤ ρ(x) for x ∈ M. Then there exists a complex linear functional F on X such that
|F (x)| ≤ ρ(x) for all x ∈ X and F |M = f.

Solution: Since the dual space of L∞[0, 1] cannot literally contain L1[0, 1], we shall show that there exists
an isometry, Φ : L1[0, 1] → (L∞[0, 1])∗, hence Φ(L1[0, 1]) ⊆ (L∞[0, 1])∗, and then we shall show that there
exists F ∈ (L∞[0, 1])∗ such that F ̸= Φ(g) for any g ∈ L1[0, 1].

Fix f ∈ L1[0, 1] and define Φ : L1[0, 1] → (L∞[0, 1])∗ by Φ(f) = Φf where Φf : L∞[0, 1] → C and

Φf (g) =

∫ 1

0

fg

We’ll first show that Φf is indeed a bounded linear functional on L∞[0, 1]. It is clear that Φf is linear since
the integral is a complex linear functional on the space of complex valued integrable functions. Next, by
theorem 6.8a, observe that

∥Φf∥ = sup
g∈L∞[0,1]
∥g∥∞=1

|Φf (g)|

= sup
g∈L∞[0,1]
∥g∥∞=1

∣∣∣∣∫ 1

0

fg

∣∣∣∣
≤ sup

g∈L∞[0,1]
∥g∥∞=1

∥fg∥1

≤ sup
g∈L∞[0,1]
∥g∥∞=1

∥f∥1∥g∥∞

= ∥f∥1
<∞

Thus, Φf ∈ (L∞[0, 1])∗.
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Next, in order to prove that Φ is an isometry, we’ll show that ∥Φ(f)∥ = ∥f∥1. By the calculation above,
it suffices to show that ∥Φ(f)∥ ≥ ∥f∥1. To do this, let us consider the function sgn(f) where sgn is the
complex sign function sgn(z) = z/|z| for z ̸= 0 and sgn(z) = 0 otherwise. Then, it is clear that

∥∥∥sgn(f)∥∥∥
∞

=

∥∥∥∥ f|f |
∥∥∥∥
∞

= sup
x∈(0,1]

∣∣∣∣∣ f(x)|f(x)|

∣∣∣∣∣ = sup
x∈(0,1]

∣∣∣f(x)∣∣∣
|f(x)|

= 1

Hence, sgn(f) ∈ L∞[0, 1]. Now we see that

∥Φf∥ = sup
g∈L∞[0,1]
∥g∥∞=1

|Φf (g)|

= sup
g∈L∞[0,1]
∥g∥∞=1

∣∣∣∣∫ 1

0

fg

∣∣∣∣
≥
∣∣∣∣∫ 1

0

f · sgn(f)
∣∣∣∣

=

∣∣∣∣∫ 1

0

f · f
|f |

∣∣∣∣
=

∫ 1

0

|f |

= ∥f∥1.

Thus, Φ is an isometry from L1[0, 1] to (L∞[0, 1])∗.

To show that (L∞[0, 1])∗ ̸⊆ Φ(L1[0, 1]), first consider fn : [0, 1] → C by

fn(x) = max{1− nx, 0}

Then fn ∈ L∞[0, 1] for all n ∈ N. For every g ∈ L1[0, 1] we have that limn→∞(gfn) = 0 a.e. and
|gfn| ≤ |g| ∈ L1[0, 1], so by the Dominated Convergence theorem,

lim
n→∞

Φg(fn) = lim
n→∞

∫ 1

0

gfn =

∫ 1

0

0 = 0

Now define F : C[0, 1] → C by F(f) = f(0), where C[0, 1] is the space of continuous complex-valued
functions on [0, 1]. F is well defined since if f, g ∈ C[0, 1] with f = g a.e., then f = g for all x ∈ [0, 1]
since if there exists an x0 ∈ [0, 1] such that f(x0) ̸= g(x0) then since f, g are continuous, there must exist
some neighborhood about x0 such that f ̸= g differ completely, hence contradicting that f = g a.e. Thus,
F(f) = F(g). Moreover, it is clear that C[0, 1] is a complex subspace of L∞[0, 1], F is linear on C[0, 1]
and |F(f)| ≤ ∥f∥∞ for all f ∈ C[0, 1]. Then by the Hahn-Banach theorem, there exists F̃ ∈ (L∞[0, 1])∗

such that |F̃(f)| ≤ ∥f∥∞ for all f ∈ L∞[0, 1] and F̃ |C[0,1] = F .

Thus, we see that

lim
n→∞

F̃(fn) = lim
n→∞

F(max{1− nx, 0}) = lim
n→∞

max{1− nx, 0}|x=0 = 1.

Hence,
lim
n→∞

F̃(fn) = 1 ̸= 0 = lim
n→∞

Φg(fn) for all g ∈ L1[0, 1],

so F̃ does not correspond to any g ∈ L1[0, 1]. Hence (L∞[0, 1])∗ ̸⊆ Φ(L1[0, 1]). ■
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5.2 UCR 209C 2021 Final

Prove theorem 1.40 (Papa Rudin): Let (X,M, µ) be a measure space and µ be a finite, positive measure.
Consider a measurable function f : X → C. Suppose for every E ∈ M with µ(E) > 0 it holds that the
average

1

µ(E)

∫
E

f(x)dx ∈ B

where B is a closed subset of C. Show that f(x) ∈ B for µ-a.e. x ∈ X.

Solution: By contraposition, suppose that f(x) ̸∈ B on a nontrivial set. In other words,

µ(f−1(Bc)) > 0.

Since B ⊆ C is closed, then Bc is open in C, so Bc =
⋃∞

1 Bri(zi) where ri > 0, zi ∈ C and since
µ(f−1(Bc)) > 0, then there exists someN ∈ N such that µ(f−1(BrN (zN))) > 0. Now let E = f−1(BrN (zN)).
We know that E ∈ M since BrN (zN) is open so it is a Borel set in C and f is measurable, so f−1(E) ∈ M.
Then in order to show that

1

µ(E)

∫
E

f(x)dx ∈ BrN (zN) ⊆ Bc

we observe that ∣∣∣∣ 1

µ(E)

∫
E

f(x)dx− zN

∣∣∣∣ = ∣∣∣∣ 1

µ(E)

∫
E

f(x)dx− 1

µ(E)

∫
E

zN

∣∣∣∣
=

1

µ(E)

∣∣∣∣∫
E

f(x)− zNdx

∣∣∣∣
≤ 1

µ(E)

∫
E

|f(x)− zN |dx

<
1

µ(E)

∫
E

rNdx

= rN

as desired. ■

5.3 Folland 5.55a

Let H be a Hilbert space. Prove the polarization identity: for any x, y ∈ H,

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
Tools:

� Def. (inner product) Let H be a complex vector space (C is the underlying field). An inner product
on H is a map (x, y) 7→ ⟨x, y⟩ from H×H → C such that :

(i) ⟨ax+ by, z⟩ = a ⟨x, z⟩+ b ⟨y, z⟩ for all x, y, z ∈ H and a, b ∈ C.
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(ii) ⟨y, x⟩ = ⟨x, y⟩ for all x, y ∈ H
(iii) ⟨x, x⟩ ∈ (0,∞) for all nonzero x ∈ H.

� Re(−i(a+ bi)) = Re(b− ai) = Im(a+ bi)

Solution: By the definition of inner products (i,ii) and the norm induced by it (∥x∥ =
√
⟨x, x⟩), we see

that

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
−∥x− y∥2 = −⟨x− y, x− y⟩ = −⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩ − ⟨y, y⟩
i∥x+ iy∥2 = i ⟨x+ iy, x+ iy⟩ = i ⟨x, x⟩+ i ⟨x, iy⟩+ i ⟨iy, x⟩ − i ⟨y, y⟩

−i∥x− iy∥2 = −i ⟨x− iy, x− iy⟩ = −i ⟨x, x⟩+ i ⟨x, iy⟩+ i ⟨iy, x⟩+ i ⟨y, y⟩

Taking the sum of all 4 terms gives

∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2 = 2(⟨x, y⟩+ ⟨y, x⟩) + 2i(⟨x, iy⟩+ ⟨iy, x⟩)
= 2(2Re ⟨x, y⟩) + 2i(2Re ⟨x, iy⟩)
= 4Re ⟨x, y⟩+ 2i(2Re(−i(⟨x, y⟩)))
= 4Re ⟨x, y⟩+ 4i Im ⟨x, y⟩
= 4 ⟨x, y⟩ ■

5.4 UCR 209C 2021 Midterm

Construct a linear map F : L2(T,m) → ℓ2(Z) such that F is surjective and it preserves the inner products.
Show that it has each property.

Tools:

� T = R/Z = [0, 1]/0 ∼ 1 which is the 1-dimensional unit torus.

� L2(X,µ) is the set of measurable complex-valued functions with bounded L2-norm. That is, if
f ∈ L2(X,µ), then

∥f∥2 =
(∫

X

|f |2dµ
)1/2

<∞

� ℓ2(Z) is the space of complex-valued sequences over the integers with bounded ℓ2-norm. That is, if
f ∈ ℓ2(Z) then

∥f∥ℓ2 =

(∑
n∈Z

f(n)

)1/2

<∞

� Def. (Hilbert space). A complex vector space H equipped with an inner product ⟨·, ·⟩ which is
complete with respect to the norm induced by the inner product ∥x∥ =

√
⟨x, x⟩.

� Def. (orthonormal set). A set {uα}α∈A ⊂ H is called orthonormal is ∥uα∥ = 1 for all α ∈ A and if
α ̸= β, then uα and uβ are orthogonal, i.e., ⟨uα, uβ⟩ = 0.
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� Theorem 5.27 (Folland). If {uα}α∈A is an orthonormal set in a Hilbert space, H, then the following
are equivalent:

(a) (Completeness). If ⟨x, uα⟩ = 0 for all α, then x = 0.

(b) (Parseval’s identity). ∥x∥2 =
∑

α∈A | ⟨x, uα⟩ |2 for all x ∈ H.
(c) For each x ∈ H, x =

∑
α∈A ⟨x, uα⟩uα, where the sum on the right has only countably many

nonzero term and converges in the norm topology no matter how these terms are ordered.

� Folland 5.55a. (Polarization identity for complex vector spaces).

Solution: Let f ∈ L2(T) and recall the Fourier transform,

F(f) =

∫
T
f(x)e−2πinxdx = ⟨f, En⟩

where Et = e2πinx. Then define F (f) = F(f)(n) = f̂(n).

Let us first show that F (f) ∈ ℓ2(Z). We first recall that {En}n∈Z is an orthonormal basis of L2(T).
Moreover, it is clear that if f ̸= 0 m-a.e., then

∫
T f(x)dx ̸= 0 as well. Thus, by theorem 5.27b, we have

that Parseval’s identity holds, so

∥F (f)∥2ℓ2(Z) =
∑
n∈Z

⟨f, En⟩ = ∥f∥2L2 <∞

since f ∈ L2(T). Thus, F (f) ∈ ℓ2(Z).

Next, we’ll show that F is linear. Let f, g ∈ L2(T) and c ∈ C. Then

F (cf + g) = ⟨cf + g, En⟩ = c ⟨f, En⟩+ ⟨g, En⟩ = cF (f) + F (g)

by the linearity of the inner product in the first component.

For surjectivity, let c(n) ∈ ℓ2(Z) and consider f(x) =
∑

k∈Z c(k)e
2πikx =

∑
k∈Z c(k)Ek. Since {Ek}k∈Z

is a basis for L2(T), then f(x) ∈ span{Ek : k ∈ Z} ⊂ L2(T). Now observe that by theorem 5.27c,

f =
∑
n∈Z

⟨f, En⟩En =
∑
n∈Z

∑
k∈Z

c(k) ⟨Ek, En⟩En =
∑
n∈Z

c(n)En

since ⟨Ek, En⟩ = 1 only when k = n. Then,∑
n∈Z

(⟨f, En⟩ − c(n))En = 0

so it must be that ⟨f, En⟩ = F (f) = c(n) for each n ∈ Z. Hence F is surjective.

Last, we will show that F preserves inner products. Since Parseval’s identity holds, we know that
∥F (f)∥2ℓ2 = ∥f∥2L2 , then by the polarization identity (Folland 5.55a),〈

f̂ , ĝ
〉
=

1

4

(
∥f̂ + ĝ∥2ℓ2 + ∥f̂ − ĝ∥2ℓ2 + i∥f̂ + iĝ∥2ℓ2 − i∥f̂ − iĝ∥2ℓ2

)
=

1

4

(
∥f + g∥2L2 + ∥f − g∥2L2 + i∥f + ig∥2L2 − i∥f − ig∥2L2

)
= ⟨f, g⟩ ■
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5.5 UCR RA Qual 2017

Show that L∞[0, 1] is not separable, i.e. that is does not have a countable dense subset.

Solution: Suppose by contradiction that L∞[0, 1] is separable, so there exists a countable dense set
D ⊂ L∞[0, 1]. Consider the family of functions {χr}r∈[0,1] ⊂ L∞[0, 1] where χr is the characteristic function
on {r}. Then it is clear that for r, r′ ∈ R where r ̸= r′ we have that ∥χr − χr′∥∞ = 1. Since D is dense,
then there exists f ∈ D such that ∥f − χr∥∞ < 1

2
. Now notice,

1 = ∥χr − χr′∥∞ ≤ ∥χr − f∥∞ + ∥f − χr′∥∞ <
1

2
+ ∥f − χr′∥∞

Thus, ∥f − χr′∥∞ > 1
2
, so χr is the only function in {χr}r∈[0,1] such that f is within 1

2
distance to it in

the L∞-metric. Hence, we may define a mapping r 7→ f which is injective by above. This contradicts that
[0, 1] is uncountable since D is dense. ■

5.6 UCR 209C 2021 HW

Show that the metric of L∞(X, dµ) induced by the norm of L∞ is complete.

Solution: Let (fn)n≥1 be a Cauchy sequence in L∞(X, dµ) and let ϵ > 0. Then there exists N ∈ N such
that for all m,n ≥ N

∥fn − fm∥∞ <
ϵ

2
Next, there exists a sequence of numbers (nk)k≥1 such that

|(fnk+1 − fnk
)(x)| ≤ ∥fnk+1 − fnk

∥∞ < 2−k

∞∑
k=1

|(fnk+1 − fnk
)(x)| ≤

∞∑
k=1

∥fnk+1 − fnk
∥∞ < 1

Thus, each series above converges absolutely, so we know

f(x) := fn1(x) +
∞∑
k=1

(fnk+1 − fnk
)(x) = lim

k→∞
fnk

exists. Then, ∣∣∣( lim
k→∞

fnk
− fn)(x)

∣∣∣ = lim
k→∞

|(fnk
− fn)(x)| ≤ lim

k→∞
∥fnk

− fn∥∞ < lim
k→∞

ϵ

2
=
ϵ

2

for all nk, n ≥ N . Thus, |(f − fn)(x)| < ϵ
2
for n ≥ N , so ∥f − fn∥∞ ≤ ϵ

2
< ϵ. Therefore, ∥ · ∥∞ is complete.

5.7 UCR 209C 2021 HW

Let ϕ(x) = 1
2
e−|x| on R. Compute F(ϕ). Then use the Fourier transformation to show that u = f ∗ϕ solves

the ODE
u− u′′ = f
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Tools:

� Thm 8.26 (The Fourier Inversion Theorem) If f ∈ L1, we define

F−1(f)(x) = f̂(−x) =
∫
f(ξ)e2πiξxdξ.

if f̂ ∈ L1 as well, then f agrees almost everywhere with a continuous function f0, and F−1(f̂) =

(̂F−1(f)) = f0.

� Thm 2.37 (The Fubini-Tonelli Theorem) Suppose that (X,M, µ) and (Y,N , ν) are σ-finite
measure spaces.

(a) (Tonelli) If f ∈ L+(X × Y ), then the functions g(x) =
∫
fxdν and h(y) =

∫
f ydµ are in L+(X)

and L+(Y ), respectively, and∫
fd(µ× ν) =

∫ [∫
f(x, y)dν(y)

]
dµ(x)

=

∫ [∫
f(x, y)dµ(x)

]
dν(y)

(b) (Fubini) If f ∈ L1(µ × ν), then fx ∈ L1(ν) for a.e. x ∈ X, f y ∈ L1(µ) for a.e. y ∈ Y , the
a.e.-defined functions g(x) =

∫
fxdν and h(y) =

∫
f ydµ are in L1(µ) and L1(ν) respectively and

the integral equality of Tonelli’s holds as well.

Solution: Calculating the Fourier transformation of ϕ we have,

F(ϕ)(t) =
1√
2π

∫
R
ϕ(x)e−itxdx

=
1

2
√
2π

∫
R
e−|x|e−itxdx

=
1

2
√
2π

(∫ 0

−∞
e(1−it)xdx+

∫ ∞

0

e−(1+it)xdx

)
=

1

2
√
2π

(
1

1− it
e(1−itx)

∣∣∣∣0
−∞

− 1

1 + it

∣∣∣∣∞
0

)

Since
|exe−itx| = |ex|| cos(tx)− i sin(tx)| = |ex|

then we may evaluate the limits above to get

F(ϕ)(t) =
1√
2π

(
1

1− it
+

1

1 + it

)
=

1√
2π

1

1 + t2

First recall that

F(u′) =
1√
2π

∫
R
u′(x)e−itxdx
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For u = e−itx and dv = u′(x), we have by integration by parts

F(u′)(t) =
1√
2π

(
u(x)e−itx

∣∣∣∣∞
−∞

+ (it)

∫
R
u(x)e−itxdx

)
(∗)

= (it)F(u)(t)

Next, recall that

F(f ∗ ϕ) = 1√
2π

∫
R
(f ∗ ϕ)(x)e−itxdx

=
1√
2π

∫
R

(∫
R
f(x− y)ϕ(y)dy

)
e−itxdx

=
1√
2π

∫
R

(∫
R
f(x− y)ϕ(y)dy

)
e−itxe−ityeitydx

=
1√
2π

∫
R

(∫
R
f(x− y)ϕ(y)dy

)
e−it(x−y)e−itydx (∗∗)

=
√
2π

(
1√
2π

∫
R
f(x− y)e−it(x−y)dx

)(
1√
2π

∫
R
ϕ(y)e−itydy

)
=

√
2πF(f)(t)F(ϕ)(t)

Now in order to show that u = f ∗ ϕ solves the ODE u − u′′ = f above, we take Fourier tranforms of
both sides.

F(f) = F(u− u′′)

= F(u)−F(u′′)

= F(f ∗ ϕ)− (it)2F(f ∗ ϕ)
=

√
2πF(f)F(ϕ) + t2

√
2πF(f)F(ϕ)

=
√
2π(1 + t2)F(f)F(ϕ)

=
1

F(ϕ)
F(f)F(ϕ)

= F(f).

Hence u = f ∗ ϕ does satisfy u− u′′ = f.

For the assumptions on f , we first note that in order to fully solve the ODE, we need to use the inverse
Fourier transform, so by the Fourier inversion theorem, we require that f,F(f) ∈ L1(R) and so that F−1

may be taken. Next, in (∗), we made use of the fact that the boundary term from integration by parts
disappeared. In order to make such an assumption, we require that f ∈ C2(R) so that we may take the
second derivative, f (k) ∈ L1(R) for k = 0, 1, 2 so that we may integrate and f (k) ∈ C0 for k = 0, 1 so
that the boundary term (after differentiating) disappears. Last, we used Fubini’s theorem in (∗∗), which
requires that f ∈ L1(R× R) when written in terms of x and y but this follows from f ∈ L1(R).
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5.8 UCR RA Qual 2016

Let f(x) = 1
2
− x on the interval [0, 1). Extend f to be periodic on R and use the Fourier series of f to

show that ∑
k≥1

1

k2
=
π2

6

Tools:

� The fourier series of f : T → C is

∑
k∈Z

f̂(k)Ek =
∞∑

k=−∞

(∫
T
f(x)e−2πikxdx

)
e−2πikx

Solution: First, we see that the Fourier transform of f when k ̸= 0 is

f̂(k) =

∫
T
(1
2
− x)e−2πikxdx

=
1

2

∫
T
e−2πikxdx−

∫
T
xe−2πikxdx

=
1

2

∫
T
e−2πikxdx+

x

2πik
e−2πikx

∣∣∣∣1
0

+

∫
T
e−2πikxdx

=
3

2

(
−1

2πik

)
e−2πikx

∣∣∣∣1
0

+
1

2πik

=
1

2πik

For k = 0, we know that f̂(0) = 0. Thus,

∞∑
k=−∞,k ̸=0

f̂(k)Ek =
∞∑

k=−∞,k ̸=0

(
1

2πik

)
e−2πikx =

∞∑
k=−∞,k ̸=0

(
1

2πik

)
[cos(2πkx)− i sin(2πkx)]

=
∞∑
k=1

cos(2πkx)

πik

5.9 UCR RA Qual 2016

Prove that if H is a Hilbert space, M ⊆ H is a closed linear subspace, and v ∈ H, then there exists a point
x ∈M achieving the minimum distance to v. In other words, if y ∈ H, then ∥y − v∥ ≥ ∥x− v∥.

Tools:

� Thm 5.22 (The Parallelogram Law) For all x, y ∈ H, ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).
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Solution: Let v ∈ H, δ = inf{∥x − v∥ : x ∈ M}, and ϵ > 0. Then there exists a sequence (xn)
∞
1 ⊂ M

such that ∥xn − v∥ → δ as n→ ∞. Let ϵ > 0. We know by the parallelogram law that

2∥xn − v∥2 + 2∥xm − v∥2 = ∥xn − xm∥2 + ∥xn + xm − 2v∥2

so

∥xn − xm∥2 = 2∥xn − v∥2 + 2∥xm − v∥2 − ∥xn + xm − 2v∥2

= 2∥xn − v∥2 + 2∥xm − v∥2 − 4∥1
2
(xn + xm)− v∥2

Since M is a linear space, then we know 1
2
(xn + xm) ∈ M , so ∥1

2
(xn + xm) − v∥ ≥ δ. Moreover, since

∥xn − v∥ → δ, then there exists N ∈ N such that for all n ≥ N , ∥xn − v∥ < δ+ ϵ. Thus, for such n, we see

∥xn − xm∥2 ≤ 4(δ + ϵ)2 − 4δ2 = 8δϵ+ 4ϵ2

Thus, (xn)
∞
1 is Cauchy in H so it converges to some x ∈ H, but since M is closed, then x ∈ M and x is

the element of least distance to v.

5.10 UCR Math209C 2021 HW

Prove the following version of the Riemann-Lebesgue lemma. Let T = R/Z. Show that the Fourier
coefficients f̂ : Z → C of f ∈ L1(T,m), f̂(n) =

∫
T f(x)e

−2πinxdx satisfy

lim
|n|→∞

|f̂(n)| = 0.

You may use the fact that trigonometric polynomials are dense in (L1(T,m), ∥ · ∥1)

Tools:

� If f(x) : T → C is a trigonometric polynomial, that is f(x) =
∑M

k=−M ake
2πikx, then ∥f∥1 = 0 when

k ̸= 0.

Proof. It suffices to show this for a single term

∥Ek∥1 =
∫
T
ake

2πikxdx

= ak
1

2πik
[cos(2πkx) + i sin(2πkx)]10

= ak
1

2πik
(1− 1)

= 0
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Solution: Since trigonometric polynomials are dense in L1(T) then there exists h =
∑M

k=−M ake
2πikx,

ak ∈ C such that ∥h− f∥1 < ϵ

|f̂(n)| =
∣∣∣∣∫

T
f(x)e−2πinxdx

∣∣∣∣
≤
∫
T
(|f(x)− h(x)|+ |h(x)|)|e−2πinx|dx

= ∥f − h∥1 + ∥hEn∥1

< ϵ+

∥∥∥∥∥
M∑

k=−M

En−k

∥∥∥∥∥
And since ∥En−k∥ = 0 when n ̸= k then we may choose |n| > M so that,

|f̂(n)| < ϵ

Thus, lim|n|→∞ f̂(n) = 0.
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